Introduction

<u>Data</u>: set of *n* attribute measurements $\{z(\mathbf{s}_i), i = 1, ..., n\}$, available at *n* sample locations $\{\mathbf{s}_i, i = 1, ..., n\}$

Objectives:

- quantify spatial *auto-correlation*, or attribute dissimilarity typically expressed as: $\frac{1}{2}[z(\mathbf{s}_i) - z(\mathbf{s}_j)]^2$ as a function of separation distance between sample pairs \mathbf{s}_i and \mathbf{s}_j
- Slide 1
- introduce the sample semivariogram, its characteristics, and provide some examples <u>NOTE</u>: Spatial auto-correlation is a second-order characteristic of spatial variation, and hence the sample semivariogram should be computed from data whose spatial variation is not explained by first-order effects
- justify the need of going beyond the sample semivariogram to a semivariogram model
- introduce parametric functions of distance that can be used as formal theoretical semivariogram models
- discuss issues of fitting semivariogram models to sample semivariogram values

Semivariogram Cloud

Definition: A scatter-plot of <u>attribute</u> squared semidifferences between all possible pairs of samples measured at different locations, versus their separation distance

Computational procedure:

- Slide 2 1. construct Euclidean distance matrix $\mathbf{D} = [d_{ij}, i = 1, ..., n, j = 1, ..., n]$ between all n^2 pairs of data locations, where d_{ij} is defined as: $d_{ij} = ||\mathbf{h}_{ij}|| = ||\mathbf{s}_i \mathbf{s}_j||$
 - 2. construct squared semidifference matrix $\mathbf{E} = [e_{ij}, i = 1, ..., n, j = 1, ..., n]$ between all n^2 pairs of attribute values, where e_{ij} is defined as: $e_{ij} = \frac{1}{2}[z(\mathbf{s}_i) - z(\mathbf{s}_j)]^2$
 - 3. plot each distance value d_{ij} against the corresponding squared semidifference e_{ij} ; in other words, plot $\mathbf{e} = vec(\mathbf{E})$ versus $\mathbf{d} = vec(\mathbf{D})$. The plot of all pairs $\{d_{ij}, e_{ij}\}$ is termed a *semivariogram cloud*

Slide 3

A measure of dissimilarity between attribute values measured at different locations, i.e., a spatial measure of attribute dissimilarity

Expected graph pattern: As the distance d_{ij} between sample pairs increases, the corresponding squared semidifference e_{ij} should also increase

Difficult to interpret, so we consider groups of sample pairs separated by similar distances i.e., <u>average</u> squared semidifferences within distance classes (x-axis bins in the right graph above)

Slide 4

Going from the first to the second:

- define a set of L distance classes; the *l*-th class has limits: $(d_l t_l, d_l + t_l]$, where d_l is the class midpoint and t_l is half the class width (or distance tolerance)
- for a given distance class $(d_l t_l, d_l + t_l]$, the semivariogram value $\hat{\gamma}(d_l)$ is the <u>average</u> of $n(d_l) \ll n^2$ squared attribute semidifferences computed from sample pairs whose inter-distances d_{ij} satisfy: $d_l - t_l \ll d_{ij} \leq d_l + t_l$
- in other words, the semivariogram plot can be regarded as a summary of the semivariogram cloud, according to some distance-based grouping of samples

Computing Sample Semivariograms

1. compute distance matrix $\mathbf{D} = [d_{ij}, i = 1, \dots, n, j = 1, \dots, n]$ and squared semidifference matrix $\mathbf{E} = [e_{ij}, i = 1, \dots, n, j = 1, \dots, n]$ between n^2 data pairs

	0	d_{12}	d_{13}	d_{14}	d_{15} .] [0	e_{12}	e_{13}	e_{14}	e_{15}
	d_{12}	0	d_{23}	d_{24}	d_{25}		e_{12}	0	e_{23}	e_{24}	e_{25}
$\mathbf{D} =$	d_{13}	d_{23}	0	d_{34}	d_{35}	$\mathbf{E} =$	e_{13}	e_{23}	0	e_{34}	e_{35}
	d_{14}	d_{24}	d_{34}	0	d_{45}		e_{14}	e_{24}	e_{34}	0	e_{45}
	d_{15}	d_{25}	d_{35}	d_{45}	0	J	e_{15}	e_{25}	e_{35}	e_{45}	0

Slide 5

2. for a given distance class $(d_l - t_l, d_l + t_l]$, find entries of **E** that correspond to entries of **D** falling in that distance class, e.g.:

3. sample semivariogram $\hat{\gamma}(d_l)$ for that class is the <u>average</u> of the $n(d_l)$ squared semidifferences, *e*-values, whose corresponding distances, *d*-values, fall in class $(d_l - t_l, d_l + t_l]$; i.e., the mean of all *e*-values in boxes in the matrix on the right above

 $\hat{\gamma}((0.05\ 0.15]) = 2.62, \ \hat{\gamma}((0.15\ 0.25]) = 3.86 =$ averages of values displayed in histograms Map views linking sample pairs that contribute to such histograms are extremely informative

Sample Semivariogram Plots

Consider a set of L distance classes with midpoints $\{d_l, l = 1, ..., L\}$ and tolerances $\{t_l, l = 1, ..., L\}$. The plot of semivariance values $\{\hat{\gamma}(d_l), l = 1, ..., L\}$ versus the average sample inter-distance for each class is called a sample semivariogram

$$\hat{\gamma}(d_l) = \frac{1}{n(d_l)} \sum_{c=1}^{n(d_l)} e_c = \frac{1}{2n(d_l)} \sum_{d_{ij} \in (d_l - t_l, d_l + t_l]}^{n(d_l)} [z(\mathbf{s}_i) - z(\mathbf{s}_j)]^2$$

Slide 7

numbers above bullets denote # of sample pairs contributing to $\hat{\gamma}(d_l)$ at each lag distance could also graph variances of *e*-values within the distance classes; $\hat{\gamma}(\mathbf{0}) = 0$, always

- <u>sill</u>: limit semivariogram value (plateau) is approximately equal to sample variance (for representative sample)
- <u>range</u>: distance at which semivariogram reaches (or starts oscillating around) sill = distance of influence of any datum on another
- <u>nugget effect</u>: discontinuity at origin $(\hat{\gamma}(\epsilon) > \epsilon)$; sum of measurement error and micro-structures (variability at scales smaller than sampling interval) watch out for sparse data, outliers and positional or attribute errors
- transformation of Euclidean distance into statistical "distance" bearing imprint of specific phenomenon

Sample Semivariogram Shape & Interpretation (1)

Quadratic shape near origin:

Slide 9

Interpretation:

- highly continuous (extremely smooth) spatial attribute variability
- spatial attribute is differentiable
- typical variables: elevation, temperature, ...

Sample Semivariogram Shape & Interpretation (2)

Linear shape near origin:

Slide 10

Interpretation:

- continuous variability (not extremely smooth) of spatial attribute
- attribute is not differentiable
- typical variables: ore grades, ...

Sample Semivariogram Shape & Interpretation (3)

Discontinuous near origin:

Slide 11

Interpretation:

- highly irregular (quasi-random) spatial variability at small scales
- typical variables: precipitation, ...

Sample Semivariogram Shape & Interpretation (4)

Oscillating (around sill):

Slide 12

Interpretation:

- periodic variability of spatial attribute yields sinusoidal semivariogram
- semivariogram shape possibly due to limited sampling
- need to provide physical evidence for periodicity
- frequently encountered in time series

The Need for Semivariogram Models

<u>Problems</u>: (i) sill, range, and relative nugget, cannot be determined directly from the sample semivariogram plot, (ii) a continuum of semivariogram values $\gamma(d)$ for any distance vector d is required in interpolation, but *sample* semivariogram values $\{\hat{\gamma}(d_l), l = 1, \dots, L\}$ are typically calculated only for few (L) distances $\{d_l, l = 1, \dots, L\}$.

Semivariogram model definition: parametric function $\gamma(d; \theta)$ fitted to sample semivariogram values { $\hat{\gamma}(d_l), l = 1, ..., L$ }; θ denotes parameter vector with, e.g., range, and sill (for a given semivariogram function)

semivariogram modeling is more than a curve fitting exercise; Warning: cannot use any curve as semivariogram model !!!

Valid Semivariogram Models: Pure Nugget Effect

Slide 14

$(d \cdot \boldsymbol{\theta}) = \int$	0,	if $d = 0$
$\gamma(a, \mathbf{v}) = \{$	σ,	if d>0

 $oldsymbol{ heta} = [\sigma]$, where σ denotes attribute variance

- indicates complete absence of spatial correlation
- could occur due to measurement error and microstructure, i.e., features occurring at scales smaller than sampling interval

Valid Semivariogram Models: Spherical

Slide 15

Slide 16

$\int \sigma(d; \boldsymbol{\theta}) = \int \sigma$	$\left[\frac{3}{2}\left(\frac{d}{r}\right) - \frac{1}{2}\left(\frac{d}{r}\right)^3\right],$	if d < r
$\int \sigma da, \sigma = \int \sigma$	· · · · · · · · · · · · · · · · · · ·	$\text{if } d \geq r$

 $oldsymbol{ heta} = [\sigma \ \ r]$, where r is the model range

- linear behavior at origin
- clearly defined range parameter r

Valid Semivariogram Models: Exponential

• linear behavior at origin; rises faster than spherical; reaches sill asymptotically

• <u>effective</u> range parameter r; distance at which 95% of sill reached

Valid Semivariogram Models: Gaussian

Slide 17

- quadratic behavior at origin; implies smooth spatial variability of attribute values; reaches sill asymptotically
- <u>effective</u> range parameter r; distance at which 95% of sill reached

- discontinuous at origin; reaches sill asymptotically
- practical range parameter r; distance at which 95% of sill reached
- a/σ = relative nugget contribution = proportion (to total sill) of purely random spatial variability
- more complex models can be built by adding or multiplying valid models

Fitting Semivariogram Models to Sample Data

Or fitting valid semivariogram functions (curves) to sample semivariogram values

Manual fitting:

- select number of semivariograms, their type (functional form), sill, and range
- model behavior at origin (nugget effect, shape of semivariogram at distances smaller than first lag) using prior knowledge about phenomenon

Automatic fitting:

- Slide 19
- <u>least squares fit</u> (ordinary, generalized, weighted): choose semivariogram model parameters (typically iteratively) so as to minimize discrepancy between model and sample semivariogram values over all lags; other methods also available
 - treat with caution, especially with sparse data and outliers

Cross-validation:

- given a proposed parameter set, i.e., a semivariogram model, perform cross-validation using geostatistical interpolation, and record resulting error statistics
- repeat with different model parameters, and select as "optimal" model the one whose parameters yield best cross-validation error statistics

Summary

- Spatial auto-correlation can be quantified by looking at attribute dissimilarity as a function of separation distance
- The semivariogram cloud is "too cloudy" for detecting meaningful patterns
- The semivariogram plot is constructed by averaging squared semidifferences within distance bins to "smooth" out the variability in the semivariogram cloud
 <u>NOTE</u>: Watch out for trends (first-order effects) in the data; a sample semivariogram quantifies second-order effects and might be contaminated by variations due to trends/drifts
- Slide 20
- A quantitative way to encapsulate a sample semivariogram is through a parametric semivariogram model
- Fitting procedures exist for estimating the parameters of semivariogram models, i.e., for fitting model semivariograms to sample semivariograms
- The final semivariogram model can be used for simulation (pattern generation) and geostatistical interpolation

NOTE: A semivariogram model is a <u>spatial process</u> model, whose parameters are inferred from the sample data through the sample semivariogram

Lecture Notes

Introduction

<u>Data</u>: set of *n* attribute measurements $\{z(\mathbf{s}_i), i = 1, ..., n\}$, available at *n* sample locations $\{\mathbf{s}_i, i = 1, ..., n\}$

Objectives: (i) predict or interpolate unknown attribute value $z(\mathbf{s}_p)$ at location \mathbf{s}_p from the *n* sample data, and (ii) assess reliability of predicted value

Slide 1 Geostatistical spatial interpolation:

- predicted attribute value = weighted linear combination of sample data values
 + attribute mean, if known (non-linear methods also exist)
- a semivariogram model is used to determine the weights, which account for:
 - spatial auto-correlation between sample data and unknown value
 - spatial auto-correlation between sample data themselves (data redundancy)
- in addition, and contrary to most interpolation algorithms, geostatistics offers a measure of reliability (prediction error variance) regarding the attribute prediction

Simple Kriging (SK)

SK prediction:

$$\hat{z}(\mathbf{s}_p) = m + \sum_{i=1}^n w_p(\mathbf{s}_i)[z(\mathbf{s}_i) - m] = \mathbf{w}_p^T \mathbf{r}$$

• $\mathbf{w}_p = [w_p(\mathbf{s}_i), i = 1, ..., n]^T$: $(n \times 1)$ vector of SK-weights assigned to n sample data for prediction at location \mathbf{s}_p ; superscript T denotes transposition

• $\mathbf{r} = [z(\mathbf{s}_i) - m, i = 1, ..., n]^T$: $(n \times 1)$ vector of residual data from <u>known</u> mean m

$$\hat{z}(\mathbf{s}_p) = m + \underbrace{\left[\begin{array}{c} w_p(\mathbf{s}_1) \cdots w_p(\mathbf{s}_i) \cdots w_p(\mathbf{s}_n) \end{array}\right]}_{\mathbf{w}_p^T} \underbrace{\left[\begin{array}{c} z(\mathbf{s}_1) - m \\ \vdots \\ z(\mathbf{s}_i) - m \\ \vdots \\ z(\mathbf{s}_n) - m \end{array}\right]}_{\mathbf{r}}$$

use semivariogram <u>model</u> to determine weights at each prediction location; typically, it is the covariogram model that is used due to computational reasons

Requisites for Geostatistical Interpolation I

Data-to-data and data-to-unknown distances:

	0		d_{1j}		d_{1n}]		d_{1p}
	-	·	:	·	÷			÷
$\mathbf{D} =$	d_{i1}		0		d_{in}	and	$\mathbf{d}_p =$	d_{ip}
	- - -	·	÷	·	÷			÷
	d_{n1}		d_{nj}		0			d_{np}

Slide 4

Comments:

- as any other interpolation method, one accounts for the proximity of the n sample locations to the prediction location ${\bf s}_p$

Note: Vector \mathbf{d}_p changes from one prediction location \mathbf{s}_p to another, hence the subscript p

 <u>unlike</u> other interpolation methods, one also accounts for the proximity between sample locations themselves (<u>sample configuration or data layout</u>)
 Note: Matrix **D** of sample-to-sample distances is the <u>same</u> for all prediction locations

Requisites for Geostatistical Interpolation II

<u>From distance matrices to model covariance matrices</u>: Take any distance value d_{ij} and d_{ip} , i.e., any entry in **D** and d_p , and transform it, via the covariogram model, to a covariance value $\sigma(d_{ij})$ and $\sigma(d_{ip})$

Data-to-data and data-to-unknown model covariances:

	$\sigma(0)$		$\sigma(d_{1j})$		$\sigma(d_{1n})$			$\sigma(d_{1p})$
	:	·	÷	·	÷			•
$\mathbf{\Sigma} =$	$\sigma(d_{i1})$		$\sigma(0)$		$\sigma(d_{in})$	and	$oldsymbol{\sigma}_p =$	$\sigma(d_{ip})$
	:	·	:	·	÷			•
	$\sigma(d_{n1})$		$\sigma(d_{nj})$		$\sigma(0)$			$\sigma(d_{np})$

- data-to-data covariance matrix Σ : $(n \times n)$ matrix with model covariance values $\sigma(d_{ij})$ between any two sample locations separated by distance d_{ij}
- data-to-unknown covariance vector σ_p : $(n \times 1)$ vector with model covariance values $\overline{\sigma(d_{ip})}$ between the *n* sample locations and the prediction location \mathbf{s}_p Note: Vector σ_p changes from one prediction location \mathbf{s}_p to another, hence the subscript *p*

Requisites for Geostatistical Interpolation III

Data-to-data and data-to-unknown model covariances:

	$\int \sigma(0)$		$\sigma(d_{1j})$		$\sigma(d_{1n})$		[$\sigma(d_{1p})$
	:	·		·	:			
$\Sigma =$	$\sigma(d_{i1})$		$\sigma(0)$		$\sigma(d_{in})$	and	$\sigma_p =$	$\sigma(d_{ip})$
	:	·	•	·	:			•
	$\left[\begin{array}{c} \sigma(d_{n1}) \end{array} \right]$		$\sigma(d_{nj})$		$\sigma(0)$			$\sigma(d_{np})$

Slide 6 <u>Comments:</u>

- <u>data-to-data covariance matrix Σ</u>: encapsulates the redundancy between the sample data; for positive spatial auto-correlation, the more clustered is the sample layout, the more redundant are the sample data (less information content); a clustered sample layout typically translates into larger entries in Σ
- data-to-unknown covariance vector σ_p: encapsulates the statistical proximity

 (correlation) between the sample data and the unknown attribute value z(s_p) at the prediction location s_p; that correlation is a function of distance between sample and prediction locations, <u>not</u> of the actual (unknown) value z(s_p);

The larger the entries of vector σ_p , the stronger the predictive power of sample data

Simple Kriging (SK) System & Weights

ſ	$\sigma(0)$		$\sigma(d_{1n})$	$\begin{bmatrix} w \end{bmatrix}$	$_{p}(\mathbf{s}_{1})$] [$\sigma(d_{1p})$					
	÷	·	:		:	=	÷					
L	$\sigma(d_{n1})$		$\sigma(0)$	$\lfloor w_j$	$_{p}(\mathbf{s}_{n})$		$\sigma(d_{np})$					
	$oxed{\Sigma} \mathbf{w}_p = oldsymbol{\sigma}_p$											

Comments:

- Slide 7
- the SK system is a (disguised) version of the normal equations for the case of regression with no intercept term: X^TXb = X^Ty, where X is the design matrix and y is the vector of data on the dependent variable; in regression, the data-to-data covariance is estimated as X^TX/n, and the data-to-unknown covariance as X^Ty/n
- the weights vector \mathbf{w}_p is obtained by solving the SK system, as $\mathbf{w}_p = \boldsymbol{\Sigma}^{-1} \boldsymbol{\sigma}_p$, <u>anew</u> at each prediction location \mathbf{s}_p since the entries of $\boldsymbol{\sigma}_p$ change
- entries of \mathbf{w}_p do not depend on data values or on sill, $\sigma(0)$, of covariogram model:

	$\rho(0)$		$\rho(d_{1n})$] [$w_p(\mathbf{s}_1)$		$\int \rho(d_{1p})$
$\sigma(0)$		·.			:	$=\sigma(0)$	· · ·
	$\int \rho(d_{n1})$		1 .	ΙL	$w_p(\mathbf{s}_n)$	J	$\rho(d_{np})$

Interpreting the Simple Kriging Weights

Γ	$w_p(\mathbf{s}_1)$		1		$\rho(d_{1n})$		$\rho(d_{1p})$	
	:	$=\frac{1}{\sigma(0)}$	-	·	÷	$\sigma(0)$: : :	\Rightarrow $\mathbf{w}_p = \mathbf{\Sigma}^{-1} \boldsymbol{\sigma}_p$
L	$w_p(\mathbf{s}_n)$	0(0)	$\rho(d_{n1})$		1 -		$ \rho(d_{np}) $	

• if sample interdistances d_{ij} are larger than correlogram range, then $\rho(d_{ij}) = 0$, and $\Sigma = \sigma(0)\mathbf{I}$, the $(n \times n)$ identity matrix; this entails that $w_p(s_i) = \rho(d_{ip})$, i.e., weights are equal to correlogram values

- but in general, $\Sigma \neq \sigma(0)\mathbf{I}$, i.e., sample interdistances are within correlation range, in which case Σ^{-1} modulates σ_p : influence of samples in clusters is downplayed
- the closer the sample data to the prediction location, <u>and</u> the more spread out the data over the study region, the better the SK prediction is expected to be
- for sample data far away (beyond correlation range) from the prediction location \mathbf{s}_p , $\rho(d_{ip}) = 0$ and $\overline{w_p(\mathbf{s}_i)} = 0$: all weighs are equal to 0
- for prediction <u>at</u> a sample location s_p ≡ s_i, data-to-unknown covariance vector
 σ_p = σ_i is same as *i*-th column of Σ; this yields w_p(s_i) = 1 if s_i = s_p, 0 otherwise: only sample co-located with prediction location receives non-zero (= 1) weight

Simple Kriging Prediction and Error Variance

Once the SK weights are computed as $\mathbf{w}_p = \boldsymbol{\Sigma}^{-1} \boldsymbol{\sigma}_p$, they are substituted in the following equations to compute the SK prediction $\hat{z}(\mathbf{s}_p)$ and associated error variance $\hat{\sigma}(\mathbf{s}_p)$

SK prediction does not depend on sill $\sigma(0)$ of covariogram model:

$$\hat{z}(\mathbf{s}_p) = m + \mathbf{w}_p^T \mathbf{r} = m + [w_p(\mathbf{s}_1) \cdots w_p(\mathbf{s}_n)] \begin{bmatrix} z(\mathbf{s}_1) - m \\ \vdots \\ z(\mathbf{s}_n) - m \end{bmatrix} = m + \sum_{i=1}^n w_p(\mathbf{s}_i)[z(\mathbf{s}_i) - m]$$

Slide 9

SK prediction error variance does depend on covariogram model sill $\sigma(0)$:

$$\hat{\sigma}(\mathbf{s}_p) = \sigma(0) - \mathbf{w}_p^T \boldsymbol{\sigma}_p = \sigma(0) - [w_p(\mathbf{s}_1) \cdots w_p(\mathbf{s}_n)] \begin{bmatrix} \sigma(d_{1p}) \\ \vdots \\ \sigma(d_{np}) \end{bmatrix} = \sigma(0) - \sum_{n=1}^n w_p(\mathbf{s}_i) \sigma(d_{ip})$$

which can also be written as: $\hat{\sigma}(\mathbf{s}_p) = \sigma(0) \left[1 - \sum_{i=1}^n w_p(\mathbf{s}_i) \rho(d_{ip})\right]$

Interpreting the SK Prediction and Error Variance

$$\hat{z}(\mathbf{s}_p) = m + \sum_{i=1}^n w_p(\mathbf{s}_i)[z(\mathbf{s}_i) - m] \qquad \hat{\sigma}(\mathbf{s}_p) = \sigma(0) - \sum_{i=1}^n w_p(\mathbf{s}_i)\sigma(d_{ip})$$

Comments:

 for sample data far away (beyond correlation range) from the prediction location s_p, w_p(s_i) = 0, ∀i: all weighs are equal to 0. In this case, the SK prediction equals the known mean m and the SK error variance equals the known covariogram sill: *x̂*(s_p) = m and *ô*(s_p) = σ(0); away from the sample data, SK yields back the (assumed known) attribute overall mean and variance

- for all other prediction locations, the SK predictions depend on the sample data configuration <u>and</u> their values, while the SK error variances depend <u>only</u> on the sample data configuration; both SK predictions and error variances depend on the covariogram model $\sigma(d)$ adopted

Slide 11

(n	x 1) vector	of	prediction-to-data-location	distances:
----	-----	----------	----	-----------------------------	------------

$$\mathbf{d}_{p} = \begin{bmatrix} 3.61 & 4.47 & 6.71 & 8.06 & 8.94 & 9.49 & 13.45 \end{bmatrix}^{T}$$

i-th element of \mathbf{d}_{p} : $d_{ip} = ||\mathbf{s}_{i} - \mathbf{s}_{p}||$

Slide 12

These would be the weights if one ignored auto-correlation between sample data

Slide 13

i, j-th element of matrix $\mathbf{\Sigma}$: $\sigma_{ij} = 1 imes \exp(-3 imes d_{ij}/10)$

Determining the SK Weights: Step 4

$w_p(\mathbf{s}_1)$		1.36	-0.69	-0.09	-0.02	0.00	0.00	-0.01	0.34
$w_p(\mathbf{s}_2)$		-0.69	1.35	0.00	-0.02	0.00	-0.01	0.01	0.26
$w_p(\mathbf{s}_3)$		-0.09	0.00	1.36	-0.01	-0.69	-0.01	-0.01	0.13
$w_p(\mathbf{s}_4)$	=	-0.02	-0.02	-0.01	1.09	0.00	-0.32	-0.01	0.09
$w_p(\mathbf{s}_5)$		0.00	0.00	-0.69	0.00	1.35	-0.01	-0.01	0.07
$w_p(\mathbf{s}_6)$		0.00	-0.01	-0.01	-0.32	-0.01	1.11	-0.12	0.06
$w_p(\mathbf{s}_7)$.		-0.01	0.01	-0.01	-0.01	-0.01	-0.12	1.02	0.02
									<u> </u>
\mathbf{w}_p					Σ^{-1}				σ_p

SK weights

145.0 141.0 137.0 133.0 129.0

125.0 55.0

original weights vector $(\mathbf{w}_p = \boldsymbol{\sigma}_p)$ modified by $\boldsymbol{\Sigma}^{-1}$ to account for sample redundancy; e.g., $w_p(\mathbf{s}_1) = 0.27$ instead of $\rho(d_{1p}) = 0.34$

(6)

70.0

).007 (7)

75.0

80.0

(4)

65.0

60.0