GIST 4302/5302: Spatial Analysis and Modeling Review

Guofeng Cao

www.gis.ttu.edu/starlab

Department of Geosciences Texas Tech University

guofeng.cao@ttu.edu

Spring 2020

Course Outlines

Basic Probability and Statistics

Statistical tools

- histogram
- mean, median, variance
- covariance, correlation coefficient
- p-value
- QQ-plot, box-plot

Pitfalls of spatial data

- MAUP
 - zone effect
 - scale effect
- Ecological fallacy

Spatial Point Pattern Analysis

Geographic distribution

- mean center, median center
- standard distance, standard ellipsoid distance

Point pattern analysis methods

- 1st order
 - Quadrat methods
 - Density estimation
- 2nd order
 - nearest neighbour distance
 - distance functions K,G

Spatial Point Pattern Analysis

Hypothesis testing of CSR

- CSR: complete spatial randomness
- Hypothesis testing

Lab

- Lab 7: Point Pattern Analysis
- Homework assignment

Areal data and spatial autocorrelation

Basics

- Spatial neighbourhood
- Spatial weight matrix

Measuring spatial autocorrelation

- Moran's / and Moran's / scatter plot
- Hypothesis testing
 - permutation test

Consequences of ignoring spatial autocorrelation

Lab

- Lab 8-a: Getting started with GeoDa
- Lab 8-b: Exploratory analysis using GeoDa

Spatial Fields

Representation of spatial fields

- Contours
- Lattice
- TIN

Spatial Interpolation

Spatial interpolation

- Deterministic interpolator
 - Nearest neighour
 - Natural neighours
 - Trend surface
 - Inverse distance weighting
 - Spatial splines
 - Triangulation
- Stochastic interpolator
 - Kriging family of methods

How to make choices of different spatial interpolation methods?

Geostatistics

Kriging

- Semivariogram, covariogram
 - Range, nugget, sill
 - Empirical semivariogram and theoretical semivariogram models
- Kriging
- Advantages of Kriging over determistic methods, such as IDW

Lab

• Lab 9: Spatial interpolation and Kriging

Spatial Uncertainty

Characteristics of uncertainty

- Unavoidable
- Uncertainty in points, networks, area-class and DEM
- Assessment of impact of uncertainty and the propagation

Labs and software

Lab topics

- Map projection
- Find what's inside
- Find what's nearby
- Raster spatial analysis
- Model builder
- Geocoding
- Point pattern analysis
- Exploratory analysis (Moran's I)
- Spatial interpolation
- Kriging

Labs and software

Software

- ArcMap
 - Arctoolbox: 3D analytst, spatial analysis, spatial statistics, geostatistics
- GeoDa (open-source)
- OpenStreetMap (mapathon)

Spatial autocorrelation

- First law of geography
- These terms often used interchangeably: spatial autocorrelation, spatial patterns, spatial dependence, spatial context

Methods and tools to explore and measure spatial autocorrelation

- Point pattern \rightarrow K and G functions, kernel density estimation
- Areal data \rightarrow Moran's I
- Geostatistical data \rightarrow Semi-variogram (i.e., covariogram)

Read and use maps/geospatial data critically!

- Map projection
- Scale and zone of the geospaital data (remember MAUP?)
- In the spatial methods we covered, parameters can be 'manipulated' to show different results
 - Look at these parameters when reading maps
 - Include these parameters when showing resultant maps

Final and Project presentation

Format of 2nd exam

- At-home exam, available on BlackBoard on May 5th (next Tuesday), due in the midnight of the same day (May 5th)
- Open books and open notes
- Multiple choices (with possible multiple correct answers) plus short answers questions
- A study guide will be sent

Project presentation

- Recorded Power Point (see here for an instruction)
- PechaKucha style (20x20), about 7 minutes each group
- Due on COB of May 8th (next Friday)

Graduate class available

- Geog 5330: Applied Spatial and Spatiotemporal Data Analysis
- Graduate level class
- Counted toward the GIS certificate

Map links

- http://www.gis.ttu.edu/gist4302/links.html
- @ttugis, @guofengcao

Course evaluation

• Online evaluation now, you should have received the link.

Thank you, any questions/comments