Spatial Analysis and Modeling (GIST 4302/5302)

Guofeng Cao Department of Geosciences Texas Tech University

Outline of This Week

- Last week, we learned:
 - spatial point pattern analysis (PPA)
 - focus on location distribution of 'events'
 - Measure the cluster (spatial autocorrelation)in point pattern
- This week, we will learn:
 - How to measure and detect clusters/spatial autocorrelation in areal data (regional data)

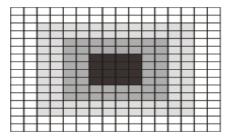
Spatial Autocorrelation

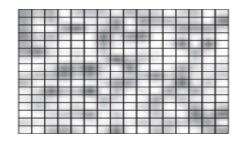
- Spatial autocorrelationship is everywhere
 - Spatial point pattern
 - K, G functions
 - Kernel functions
 - Areal/lattice (this topic)
 - Geostatistical data (next topic)

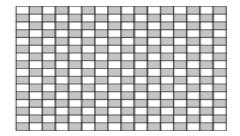
Spatial Autocorrelation of Areal Data

Spatial Autocorrelation

- Tobler's first law of geography
- Spatial auto/cross correlation







If like values tend to cluster together, then the field exhibits high **positive spatial autocorrelation** If there is no apparent relationship between attribute value and location then there is **zero spatial autocorrelation** If like values tend to be located away from each other, then there is negative spatial autocorrelation

Positive spatial autocorrelation

- high values
 surrounded by nearby high values
- intermediate values surrounded
 by nearby intermediate values
- low values surrounded by
 - nearby low values

ž

Source: Ron Briggs of UT Dallas

2002 population

density

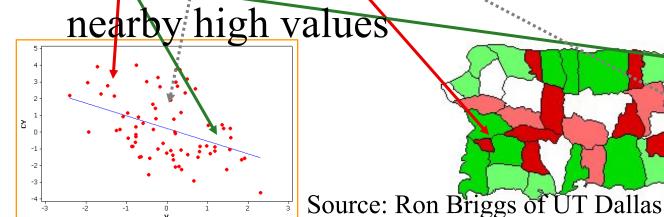
Negative spatial autocorrelation

- high values

surrounded by nearby low values

Grocery store density

- intermediate values surrounded
 by nearby intermediate values
- low values surrounded by



Measuring Spatial Autocorrelation: the problem of measuring "nearness"

- To measure spatial autocorrelation, we must know the "nearness" of our observations as we did for point pattern case
- Which points or polygons are "near" or "next to" other points or polygons?
 - -Which states are near Teras?
- –How to <u>measure</u> this?
 Seems simple and obvious,
 but it is not!

Spatial Weight Matrix

- Core concept in statistical analysis of areal data
- Two steps involved:
 - define which relationships between observations are to be given a nonzero weight, i.e., define spatial neighbors
 - assign weights to the neighbors

Spatial Neighbors

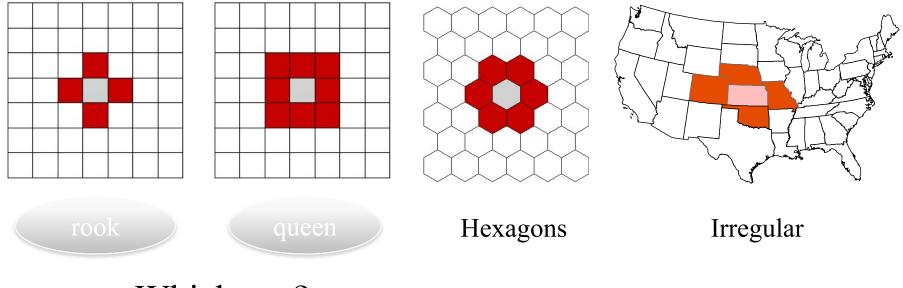
- Contiguity-based neighbors
 - Zone *i* and *j* are neighbors if zone *i* is contiguity or adjacent to zone *j*
 - But what constitutes contiguity?

• Distance-based neighbors

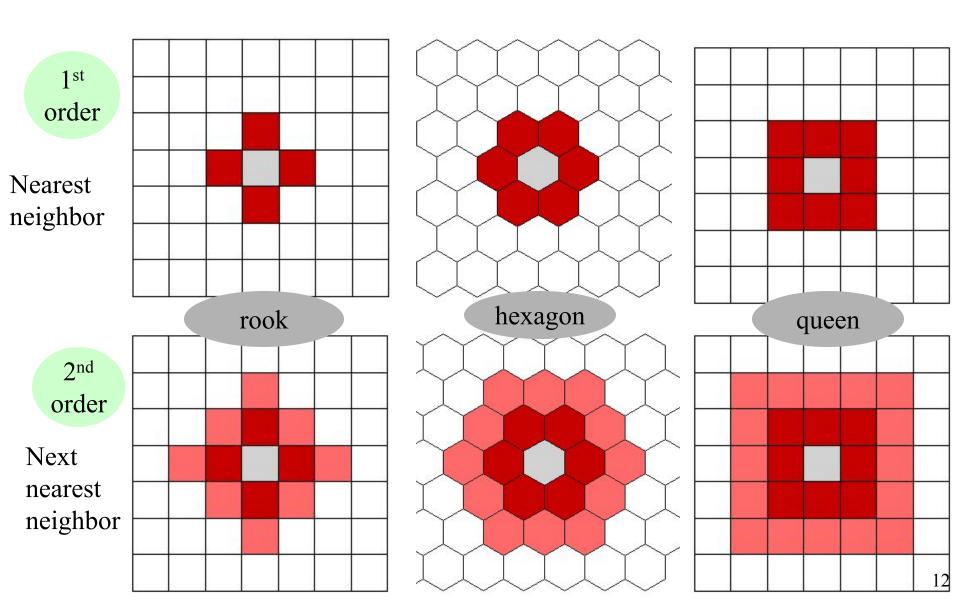
- Zone i and j are neighbors if the distance between them are less than the threshold distance
- But what distance do we use?

Contiguity-based Spatial Neighbors

- Sharing a border or boundary
 - Rook: sharing a border
 - Queen: sharing a border or a point



Higher-Order Contiguity



Distance-based Neighbors

- How to measure distance between polygons?
- Distance metrics
 - 2D Cartesian distance (projected data)
 - 3D spherical distance/great-circle distance (lat/long data)
 - Haversine formula

```
Haversine a = sin^2(\Delta \varphi/2) + cos(\varphi_1).cos(\varphi_2).sin^2(\Delta \lambda/2)
formula: c = 2.atan2(\sqrt{a}, \sqrt{(1-a)})
d = R.c
```

where φ is latitude, λ is longitude, R is earth's radius (mean radius = 6,371km)

Distance-based Neighbors

• k-nearest neighbors

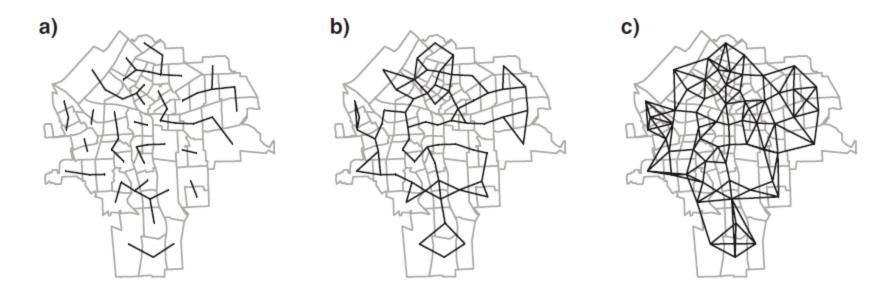


Fig. 9.5. (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

Source: Bivand and Pebesma and Gomez-Rubio

Distance-based Neighbors

• thresh-hold distance (buffer)

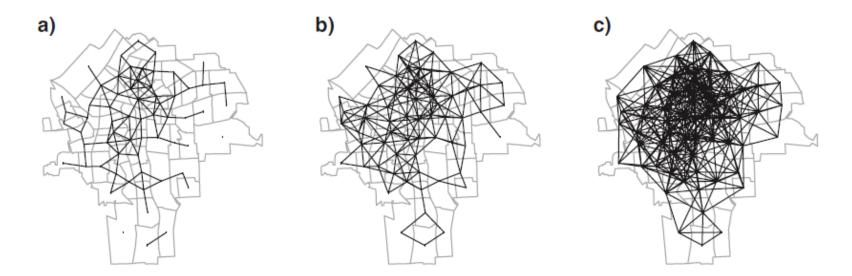
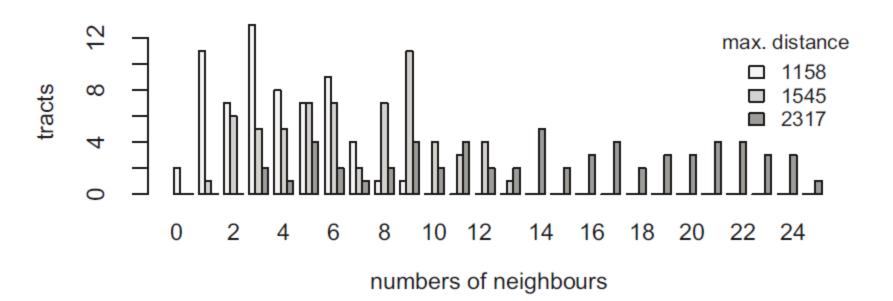


Fig. 9.6. (a) Neighbours within 1,158 m; (b) neighbours within 1,545 m; (c) neighbours within 2,317 m

Source: Bivand and Pebesma and Gomez-Rubio

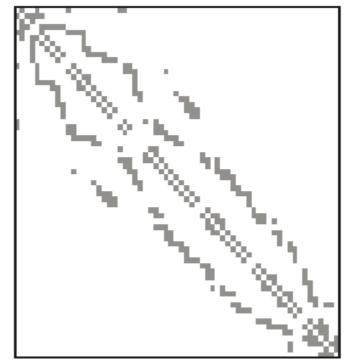
Neighbor/Connectivity Histogram



Source: Bivand and Pebesma and Gomez-Rubio

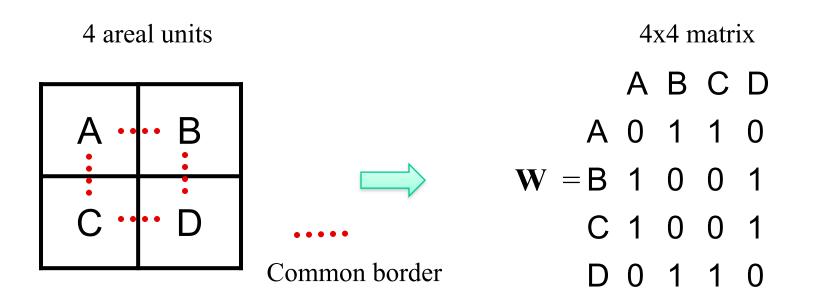
Spatial Weight Matrix

- Spatial weights can be seen as a list of weights indexed by a list of neighbors
- If zone j is not a neighbor of zone i, weights
 Wij will set to zero
 - The weight matrix can be
 - illustrated as an image
 - Sparse matrix



A Simple Example for Rook case

- Matrix contains a:
 - 1 if share a border
 - 0 if do not share a border



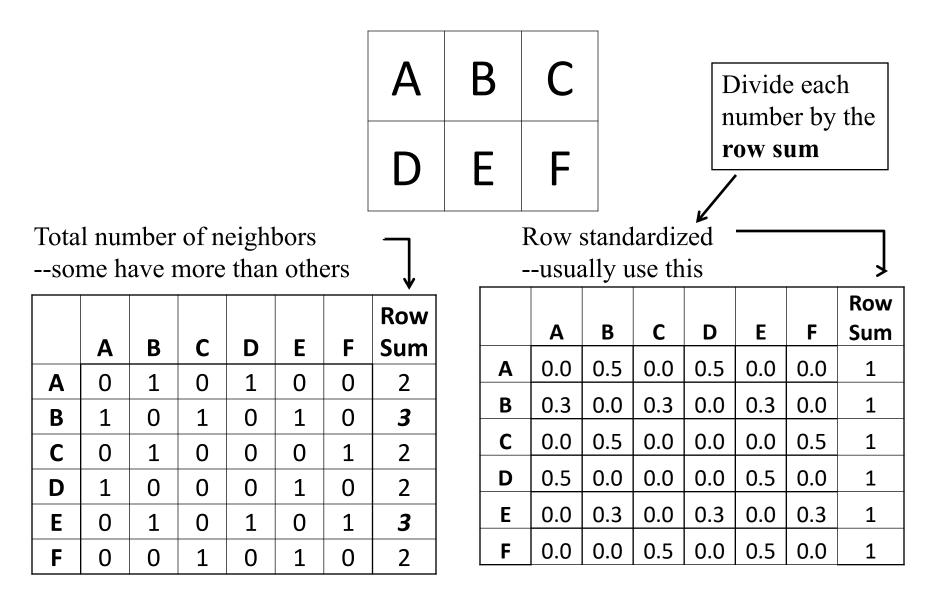
1 Machineter	
1 Washington	
	. 1 11
3 California	
4 Arizona	
5 Nevada	111 1 1 1
	1 1 111
7 Montana	
8 Wyoming	
9 Utah	
10 New Mexico	
11 Texas	
12 Oklahoma	
13 Colorado	1 111 1 11
14 Kansas	
15 Nebraska	
16 South Dakota	
17 North Dakota	1 1 1
18 Minnesota	
19 Iowa	
20 Missouri	
22 Louisiana	
23 Mississippi	
24 Tennessee	11 1 1 11 11
25 Kentucky	
26 Illinois	
27 Wisconsin	
28 Michigan	
29 Indiana	
30 Ohio	1 11 1 1
31 West Virginia	
32 Florida	
33 Alabama	11 1 1
34 Georgia	1 1 1
35 South Carolina	
36 North Carolina	1
30 NOT CHI Carorina	
37 Virginia	
38 Maryland	
39 Delaware	1 11
40 District of Columbia	
41 New Jersey	
42 Pennsylvania	
43 New York	
44 Connecticut	
45 Rhode Island	1 1 111 11
46 Massachussets	111 11
47 New Hampshire	1 11
48 Vermont	1 11
49 Maine	
TJ Marine	

			US States ·					-	-	
Name	Fips	Ncount	N1	N2	N3	N4	N5	N6	N7	N8
Alabama	1	4	28	13	12	47				
Arizona	4	5	35	8	49	6	32			
Arkansas	5	6	22	28	48	47	40	29		
California	6	3	4	32	41					
Colorado	8	7	35	4	20	40	31	49	56	
Connecticut	9	3	44	36	25					
Delaware	10	3	24	42	34					
District of Columbia	11	2	51	24						
Florida	12	2	13	1						
Georgia	13	5	12	45	37	1	47			
Idaho	16	6	32	41	56	49	30	53		
Illinois	17	5	29	21	18	55	19			
Indiana	18	4	26	21	17	39				
lowa	19	6	29	31	17	55	27	46		
Kansas	20	4	40	29	31	8				
Kentucky	21	7	47	29	18	39	54	51	17	
Louisiana	22	3	28	48	5					
Maine	23	1	33							
Maryland	24	5	51	10	54	42	11			
Massachusetts	25	5	44	9	36	50	33			
Michigan	26	3	18	39	55					
Minnesota	27	4	19	55	46	38				
Mississippi	28	4	22	5	1	47				
Missouri	29	8	5	40	17	21	47	20	19	31
Montana	30	4	16	56	38	46		20		01
Nebraska	31	6	29	20	8	19	56	46		
Nevada	32	5	6	4	49	16	41			
New Hampshire	33	3	25	23	50		· · ·			
New Jersey	34	3	10	36	42					
New Mexico	35	5	48	40	8	4	49			
New York	36	5	34	9	42	50	25			
North Carolina	30	4	45	13	42	50	20			
North Dakota	38	3	45	27	30					
Ohio	39	5	26	21	54	42	18			
Ohio Oklahoma	40	6	 5	35	48	29	20	8		
Oregon	40	4	5 6	35	48 16		20	0		
-	41	6	24	32 54	10	39	36	34		
Pennsylvania Rhode Island	42	2	24 25	9	10			- 34		
		2	25 13	37						
South Carolina	45				10	24	20	20		
South Dakota	46 47	6	56 5	27 28	19 1	31 37	38 13	30 51		
Tennessee		4					13	51	21	29
Texas	48	-	22	5	35	40		10		
Utah	49	6	4	8	35	56	32	16		
Vermont	50	3	36	25	33			6.1		
Virginia	51	6	47	37	24	54	11	21		
Washington	53	2	41	16						
West Virginia	54	5	51	21	24	39	42			
Wisconsin	55	4	26	17	19	27				
Wyoming	56	6	49	16	31	8	46	30		

Style of Spatial Weight Matrix

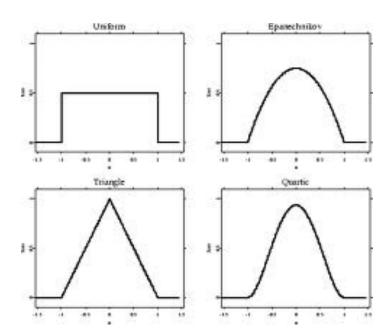
- Row
 - a weight of unity for each neighbor relationship
- Row standardization
 - Symmetry not guaranteed
 - can be interpreted as allowing the calculation of average values across neighbors
- General spatial weights based on distances

Row vs. Row standardization

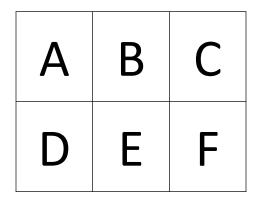


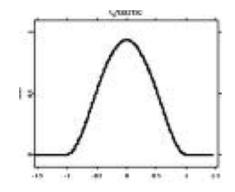
General Spatial Weights Based on Distance

- Decay functions of distance
 - Most common choice is the inverse (reciprocal) of the distance between locations i and j ($w_{ij} = 1/d_{ij}$)
 - Other functions also used
 - inverse of <u>squared</u> distance $(w_{ij} = 1/d_{ij}^2)$, or
 - negative exponential $(w_{ij} = e^{-d} \quad or \quad w_{ij} = e^{-d^2})$



Distance-based Spatial Weight Matrix





	А	В	С	D	E	F
Α	0	2	0	2	1	0
В	2	0.0	2	1	2	1
С	0	2	0	0	1	2
D	2	1	0	0	2	0
Ε	1	2	1	2	0	2
F	0	1	2	0	2	0

Measure of Spatial Autocorrelation

Global Measures and Local Measures

- Global Measures
 - A single value which applies to the entire data set
 - The same pattern or process occurs over the entire geographic area
 - An average for the entire area
- Local Measures
 - -A value calculated for <u>each</u> observation unit
 - Different patterns or processes may occur in different parts of the region
 - A unique number for each location
- Global measures usually can be decomposed into a combination of local measures

Global Measures and Local Measures

- Global Measures
 - Moran's I
- Local Measures
 - Local Moran's I

Moran's I

- The most common measure of Spatial Autocorrelation
- Use for points <u>or</u> polygons

Patrick Alfred Pierce Moran (1917-1988)

Formula for Moran's I

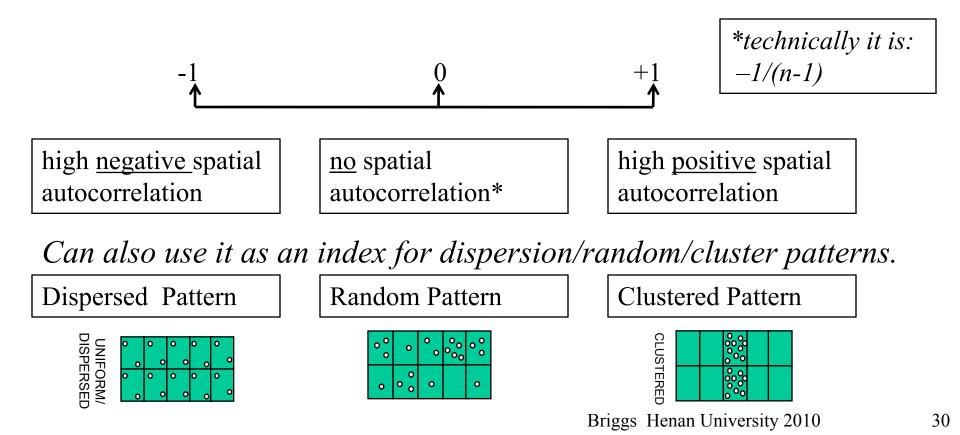
$$I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (X_i - \overline{X}) (X_j - \overline{X})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}) \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

• Where:

Nis the number of observations (points or polygons) $\overline{\mathbf{X}}$ is the mean of the variable X_i is the variable value at a particular location X_i is the variable value at another location X_i is a weight indexing location of *i* relative to j29

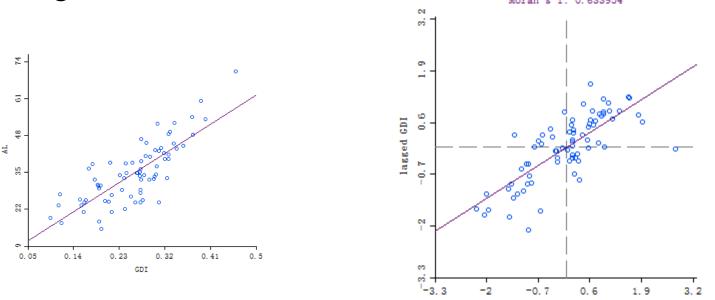
Moran's I

• Varies on a scale between -1 through 0^* to +1



Moran's I and Correlation Coefficient

- Correlation Coefficient [-1, 1]
 - Relationship between two different variables
- Moran's I [-1, 1]
- Spatial autocorrelation and often involves <u>one</u> (spatially indexed) variable only
- Correlation between observations of a spatial variable at location X and "spatial lag" of X formed by averaging all the observation at neighbors of X

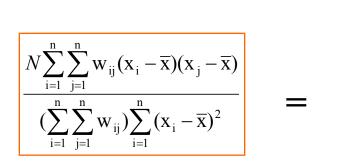


$$\frac{\sum_{i=1}^{n} 1(y_i - \overline{y})(x_i - \overline{x})/n}{\sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}}$$

Correlation Coefficient

Note the similarity of the numerator (top) to the measures of spatial association discussed earlier if we view Yi as being the Xi for the neighboring polygon

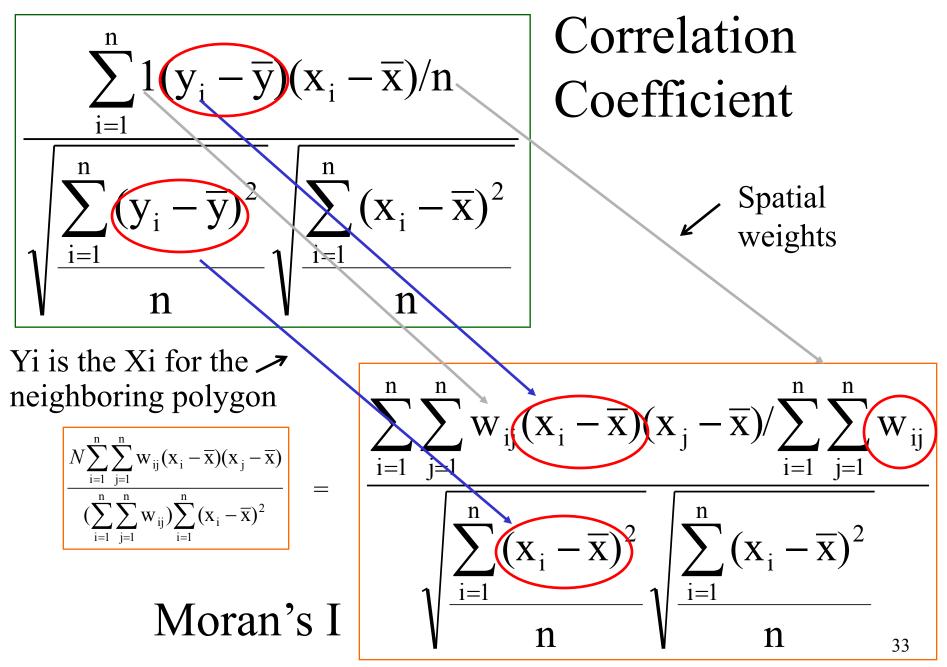
(see next slide)



Spatial auto-correlation

$$\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}W_{ij}(x_{i}-\overline{x})(x_{j}-\overline{x})/\sum_{i=1}^{n}\sum_{j=1}^{n}W_{ij}}{\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}}}\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}}$$

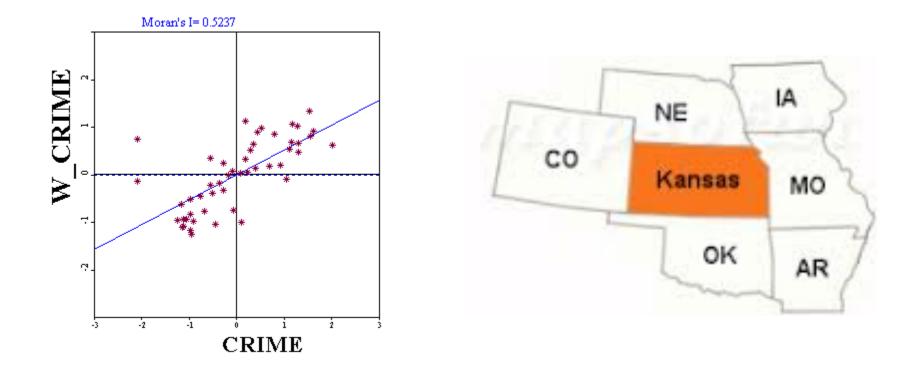
Source: Ron Briggs of UT Dallas



Source: Ron Briggs of UT Dallas

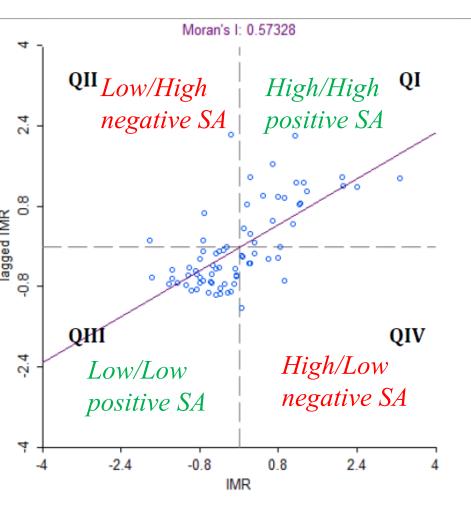
Moran Scatter Plots

We can draw a scatter diagram between these two variables (in standardized form): X and lag-X (or W_X)



The <u>slope</u> of this *regression line* is Moran's I

Moran Scatter Plots



Locations of positive spatial association ("I'm similar to my neighbors").

Q1 (values [+], nearby values [+]): H-H

Q₃ (values [-], nearby values [-]): L-L

Locations of negative spatial association ("I'm different from my neighbors").

Q₂ (values [-], nearby values [+]): L-H

Q4 (values [+], nearby values [-]): H-L

Moran Scatterplot: Example



Statistical Significance Tests for Moran's I

• Based on the normal frequency distribution with

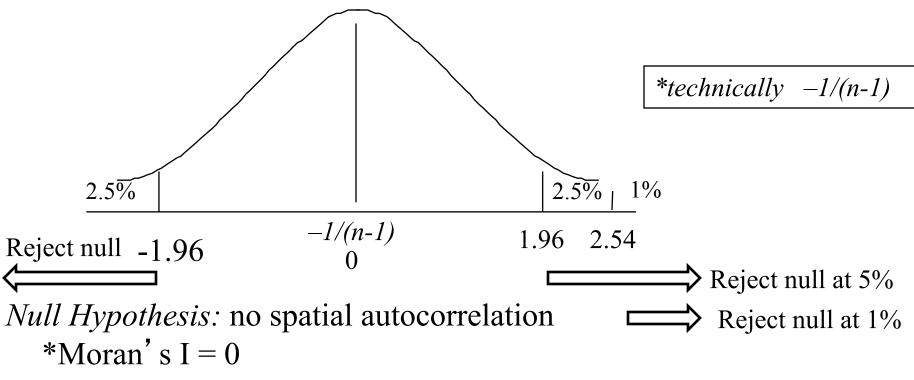
Where: I i	s the calculated value for Moran's I
- -	from the sample
E(I)) is the expected value if random
S is	s the standard error

- Statistical significance test
 - Monte Carlo test, as we did for spatial pattern analysis
 - Permutation test

 $Z = \frac{I - E(I)}{S_{error(I)}}$

- Non-parametric
- Data-driven, no assumption of the data
- Implemented in GeoDa

Test Statistic for Normal Frequency Distribution



Alternative Hypothesis: spatial autocorrelation exists *Moran' s I > 0

Reject *Null Hypothesis* if Z test statistic > 1.96 (or < -1.96)

---less than a 5% chance that, in the population, there is no spatial autocorrelation

---95% confident that spatial auto correlation exits

Null Hypothesis: no spatial autocorrelation

*Moran' s I = 0

Alternative Hypothesis: spatial autocorrelation exists

*Moran' s I > 0

Reject Null Hypothesis if Z test statistic > 1.96 (or < -1.96)

---less than a 5% chance that, in the population, there is no spatial autocorrelation

---95% confident that spatial auto correlation exits

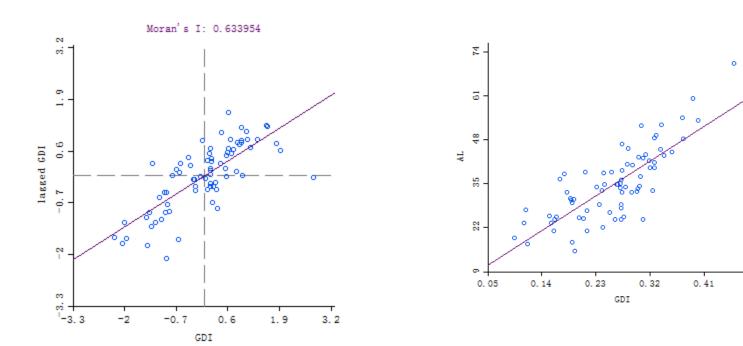
Spatial Autocorrelation vs Correlation

Spatial Autocorrelation:

shows the association or relationship between the <u>same</u> variable in "nearby" areas.

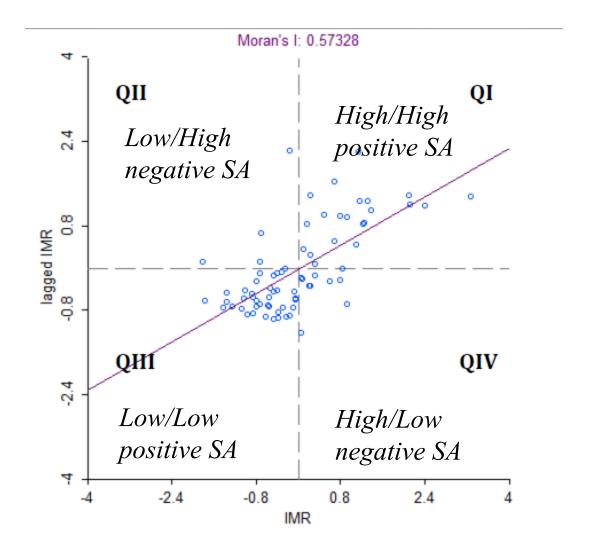
Standard Correlation

shows the association or relationship between two <u>different</u> variables



0.5

Bivariate Moran Scatter Plot



41

Local Measures of Spatial Autocorrelation

Local Indicators of Spatial Association (LISA)

- <u>Local</u> versions of *Moran's I*
- Moran's I is most commonly used, and the local version is often called Anselin's LISA, or just LISA

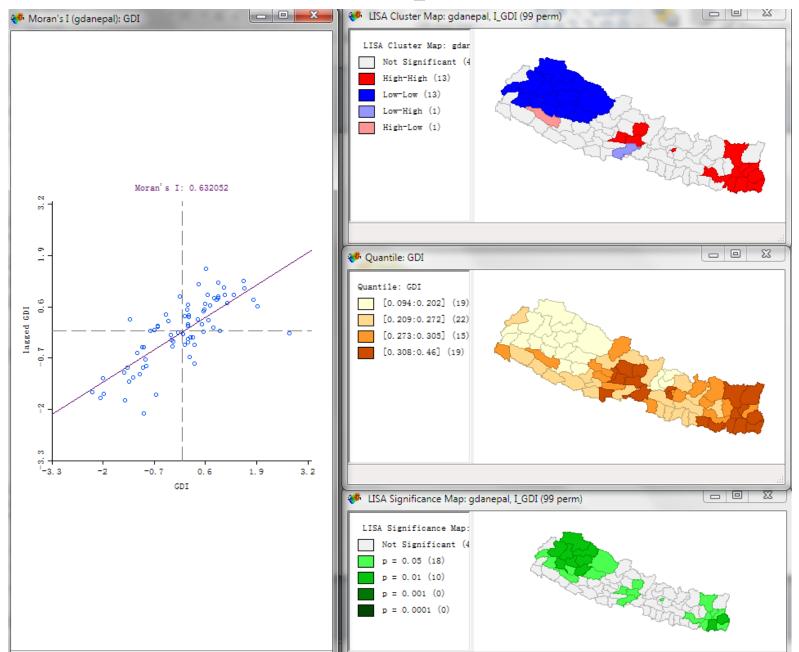
See:

Luc Anselin 1995 Local Indicators of Spatial Association-LISA Geographical Analysis 27: 93-115

Local Indicators of Spatial Association (LISA)

- The statistic is calculated for <u>each</u> areal unit in the data
- For each polygon, the index is calculated <u>based on neighboring</u> <u>polygons with which it shares a border</u>
- A measure is available for <u>each</u> polygon, these can be mapped to indicate how <u>spatial autocorrelation varies</u> over the study region
- Each index has an associated test statistic, we can also map which of the polygons has a <u>statistically significant relationship</u> with its neighbors, and show <u>type</u> of relationship

Example:



Calculating Anselin's LISA

• The local Moran statistic for areal unit *i* is:

$$I_i = Z_i \sum_j w_{ij} Z_j$$

where z_i is the original variable x_i in $z_i = \frac{x_i - x}{SD_x}$ "standardized form" or it can be in "deviation form" $x_i - x$ and w_{ii} is the spatial weight The summation $\sum_{i=1}^{n}$ is across each <u>row</u> *i* of the spatial weights matrix. An example follows

Example using seven China provinces

--caution: "edge effects" will strongly influences the results because we have a very small number of observations

Source: Ron Briggs of UT Dallas

Contiguit	t y Matrix Code	1 Anhui	2 Zhejiang	3 Jiangxi	4 Jiangsu	5 Henan	6 Hubei	7 Shanghai	Sum	Neighbors	Illiteracy
Anhui	1	0	1	1	1	1	1	0	5	65432	14.49
Zhejiang	2	1	0	1	1	0	0	1	4	7431	9.36
Jiangxi	3	1	1	0	0	0	1	0	3	621	6.49
Jiangsu	4	1	1	0	0	0	0	1	3	721	8.05
Henan	5	1	0	0	0	0	1	0	2	6 1	7.36
Hubei	6	1	0	1	0	1	0	0	3	135	7.69
Shanghai	7	0	1	0	1	0	0	0	2	24	3.97
I	litera	cy			6	H	lenar	5		4	
	97000 97000)0)1 - 6.49	0000		56	Hube	ei e	5	, An	hui	iangsu 7 Shanghai

 $_{7}$

Zhejiang

6.490001 - 0.490000 6.490001 - 8.050000 8.050001 - 9.360000 9.360001 - 14.490000

<u>- 1</u>

0001 - 14.490000 Source: Ron Briggs of UT Dallas

Contiguity Matrix and Row Standardized Spatial Weights Matrix

Contiguity	v Matrix	1	2	3	4	5	6	7	
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum
		[
Anhui	1	0	1	1	1	1	1	0	5
Zhejiang	2	1	0	1	1	0	0	1	4
Jiangxi	3	1	1	0	0	0	1	0	3
Jiangsu	4	1	1	0	0	0	0		3
Henan	5	1	0	0	0	0	1	0	2
Hubei	6	1	0	1	0	1	0	0	3
Shanghai	7	0	1	0	1	0	0	0	₂ (1/3)
Row Standardized Spatial Weights Matrix							Ť		
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00	1
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25	1
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00	1
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33	1
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00	1
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00	1
	U	0.00	0.00	0.00	0.00	0.00			-

Source: Ron Briggs of UT Dallas

Calculating standardized (z) scores

Deviations from Mean and z scores. $\chi_i - \chi_i$									
	X	X-Xmean	X-Mean2	z 🖌 Z _i =	$=\frac{1}{SD_x}$				
Anhui	14.49	6.29	39.55	2.101					
Zhejiang	9.36	1.16	1.34	0.387					
Jiangxi	6.49	(1.71)	2.93	(0.572)					
Jiangsu	8.05	(0.15)	0.02	(0.051)					
Henan	7.36	(0.84)	0.71	(0.281)					
Hubei	7.69	(0.51)	0.26	(0.171)					
Shanghai	3.97	(4.23)	17.90	(1.414)					
Mean and Standard De	viation								
Sum	57.41	0.00	62.71						
Mean	57.41	/ 7 =	8.20						
Variance	62.71	/ 7 =	8.96						
SD	√ 8.96	=	2.99						

Source: Ron Briggs of UT Dallas

Calculating LISA

Row Standardized Spatial Weights Matrix

	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00

Z-Scores for row Province and its potential neighbors

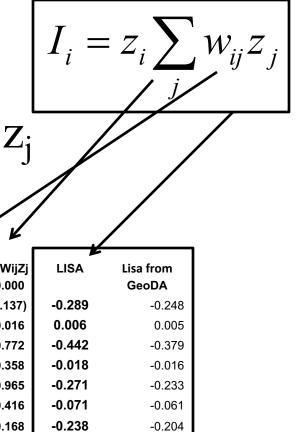
	Anhui		Zhejiang	nejiang Jiangxi		Henan	Hubei	Shanghai	
	Zi								
Anhui	2.101	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Zhejiang	0.387	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Jiangxi	(0.572)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Jiangsu	(0.051)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Henan	(0.281)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Hubei	(0.171)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	
Shanghai	(1.414)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)	

Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication)

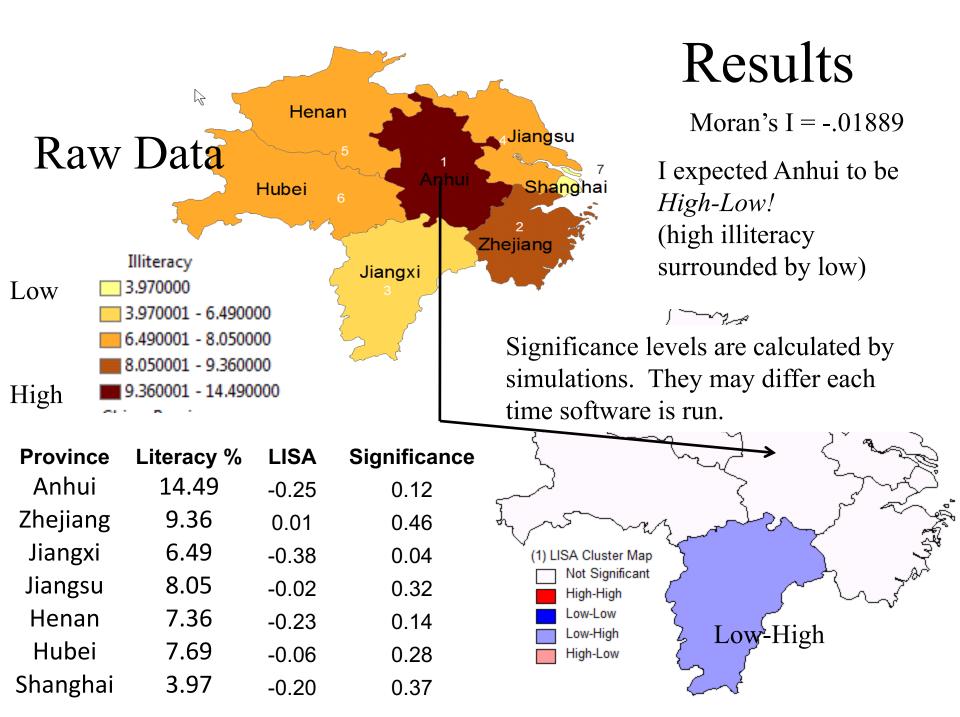
		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	1 Shanghai	SumW
	Zi								0.0
Anhui	2.101	-	0.077	(0.114)	(0.010)	(0.056)	(0.034)	-	(0.13
Zhejiang	0.387	0.525	-	(0.143)	(0.013)	-	-	(0.353)	0.0
Jiangxi	(0.572)	0.700	0.129	-	-	-	(0.057)	-	0.7
Jiangsu	(0.051)	0.700	0.129	-	-	-	-	(0.471)	0.3
Henan	(0.281)	1.050	-	-	-	-	(0.085)	-	0.9
Hubei	(0.171)	0.700	-	(0.191)	-	(0.094)	-	-	0.4
Shanghai	(1.414)	-	0.194	-	(0.025)	-	-	-	0.1

W_{ij}

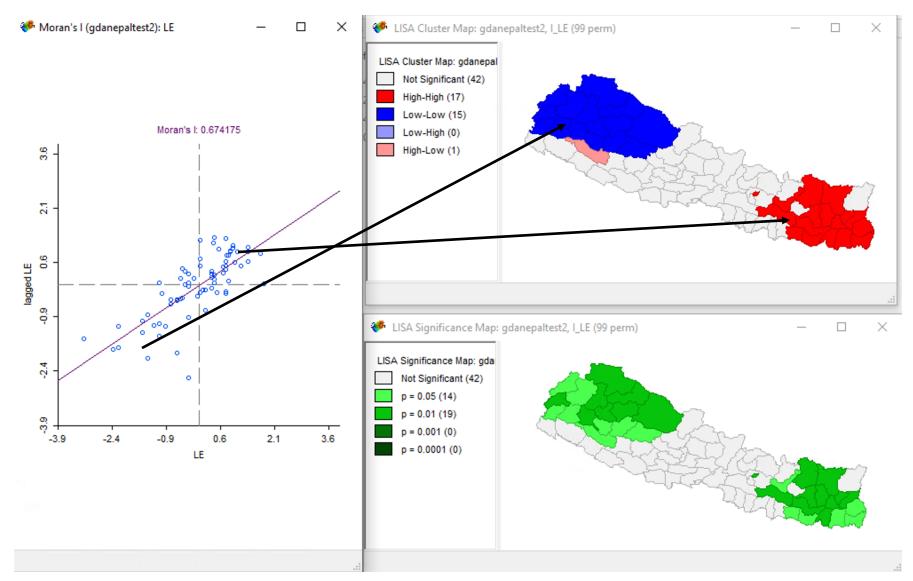
WiiZi



Source: Ron Briggs of UT Dallas



Example: Nepal Data



Bivariate LISA

- Moran's I is the correlation between X and Lag-X--the same variable but in <u>nearby</u> areas
 - Univariate Moran's I
- Bivariate Moran's I is a correlation ٠ between X and a different variable in <u>nearby</u> areas.

Moran Significance Map for GDI vs. AL

BiLISA Significance Ma

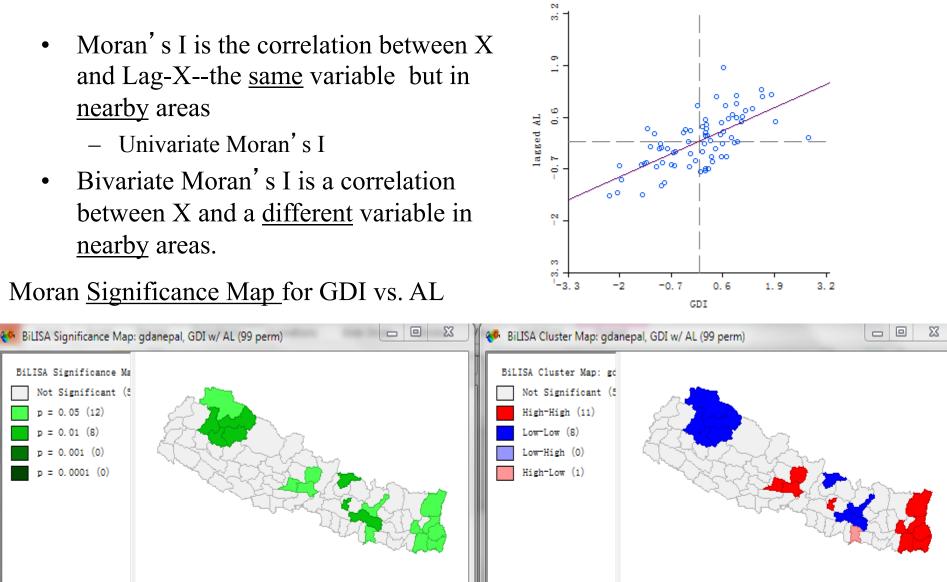
= 0.05 (12)

= 0.01 (8)

= 0.001 (0)

= 0.0001 (0)

Not Significant (5

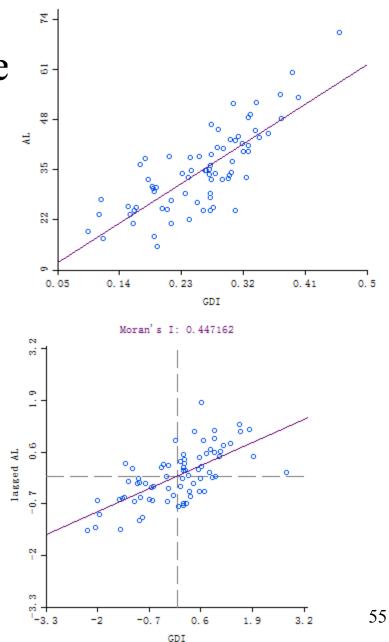


Moran <u>Scatter Plot</u> for GDI vs AL

Moran's I: 0.447162

Bivariate LISA and the Correlation Coefficie

- Correlation Coefficient is the relationship between two <u>different</u> variables in the <u>same</u> area
- Bivariate LISA is a correlation between two <u>different</u> variables in an area and in <u>nearby</u> areas.



Consequences of Ignoring Spatial Autocorrelation

- correlation coefficients and coefficients of determination appear <u>bigger</u> than they really are
 - •You think the relationship is stronger than it really is
 - •the variables in nearby areas affect each other
- Standard errors appear <u>smaller</u> than they really are
 exaggerated precision
 - •You think your predictions are better than they really are since standard errors measure *predictive accuracy*
 - •More likely to conclude

relationship is statistically significant.

Diagnostic of Spatial Dependence

• For correlation

- calculate Moran's I for each variable and test its statistical significance
- If Moran's I is significant, you may have a problem!

• For regression

- calculate the residuals
 - map the residuals: do you see any spatial patterns?
- Calculate Moran's I for the residuals: is it statistically significant?

Summary

- Spatial autocorrelation of areal data
- Spatial weight matrix
- Measures of spatial autocorrelation
- Global Measure
 - Moran' s I
- Consequences of ignoring spatial autocorrelation
- Significance test

- Please read O'S & Unwin Ch. 7 and Ch. 8.1 and 8.2
- End of this topic