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Outline of This Week

• Last week, we learned:
– spatial point pattern analysis (PPA)
– focus on location distribution of �events�
– Measure the cluster (spatial autocorrelation)in 

point pattern

• This week, we will learn:
– How to measure and detect clusters/spatial 

autocorrelation in areal data (regional data)



Spatial Autocorrelation

• Spatial autocorrelationship is everywhere
– Spatial point pattern 

• K, G functions
• Kernel functions

– Areal/lattice (this topic)
– Geostatistical data (next topic)

3



Spatial Autocorrelation of Areal 
Data
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Spatial Autocorrelation
• Tobler’s first law of geography
• Spatial auto/cross correlation
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If there is no apparent 
relationship between 
attribute value and 
location then there is 
zero spatial 
autocorrelation

If like values tend 
to be located 
away from each 
other, then there 
is negative 
spatial 
autocorrelation

If like values 
tend to cluster 
together, 
then the field 
exhibits 
high positive 
spatial 
autocorrelation



2002 population
density

Positive spatial autocorrelation
- high values
surrounded by nearby high values

- intermediate values surrounded
by nearby intermediate values

- low values surrounded by
nearby low values
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Negative spatial autocorrelation
- high values
surrounded by nearby low values

- intermediate values surrounded
by nearby intermediate values

- low values surrounded by
nearby high values

competition for space

Grocery store density

7Source: Ron Briggs of UT Dallas



Measuring Spatial Autocorrelation:
the problem of measuring �nearness�

To measure spatial autocorrelation,  we  must 
know the �nearness� of our observations as we 
did for point pattern case

• Which points or polygons are � near� or �next to�
other points or polygons?
–Which states are near Texas?
–How to measure this?

Seems simple and obvious,
but it is not!
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Spatial Weight Matrix 

• Core concept in statistical analysis of areal data
• Two steps involved:

– define which relationships between observations are to 
be given a nonzero weight, i.e., define spatial 
neighbors

– assign weights to the neighbors
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Spatial Neighbors
• Contiguity-based neighbors

– Zone i and j are neighbors if zone i is contiguity or 
adjacent to zone j

– But what constitutes contiguity? 
• Distance-based neighbors

– Zone i and j are neighbors if the distance between them 
are less than the threshold distance

– But what distance do we use?



Contiguity-based Spatial Neighbors 

• Sharing a border or boundary
– Rook: sharing a border
– Queen: sharing a border or a point
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rook queen Hexagons Irregular

Which use?



Higher-Order Contiguity

hexagonrook queen

1st

order

2nd

order
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Next 
nearest 
neighbor

Nearest 
neighbor



Distance-based Neighbors
• How to measure distance between 

polygons?
• Distance metrics

– 2D Cartesian distance (projected data)
– 3D spherical distance/great-circle distance  

(lat/long data) 
• Haversine formula

13



Distance-based Neighbors

• k-nearest neighbors
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Source: Bivand and Pebesma and Gomez-Rubio



Distance-based Neighbors

• thresh-hold distance (buffer)
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Source: Bivand and Pebesma and Gomez-Rubio



Neighbor/Connectivity 
Histogram
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Source: Bivand and Pebesma and Gomez-Rubio



Spatial Weight Matrix
• Spatial weights can be seen as a list of 

weights indexed by a list of neighbors
• If zone j is not a neighbor of zone i, weights 

Wij will set to zero
– The weight matrix can be 
illustrated as an image
– Sparse matrix
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A Simple Example for Rook case
• Matrix contains a:

– 1 if share a border
– 0 if do not share a border
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A B

C D

A B C D
A 0 1 1 0
B 1 0 0 1
C 1 0 0 1
D 0 1 1 0

4 areal units 4x4 matrix

W = 

Common border
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Name Fips Ncount N1 N2 N3 N4 N5 N6 N7 N8
Alabama 1 4 28 13 12 47
Arizona 4 5 35 8 49 6 32
Arkansas 5 6 22 28 48 47 40 29
California 6 3 4 32 41
Colorado 8 7 35 4 20 40 31 49 56
Connecticut 9 3 44 36 25
Delaware 10 3 24 42 34
District of Columbia 11 2 51 24
Florida 12 2 13 1
Georgia 13 5 12 45 37 1 47
Idaho 16 6 32 41 56 49 30 53
Illinois 17 5 29 21 18 55 19
Indiana 18 4 26 21 17 39
Iowa 19 6 29 31 17 55 27 46
Kansas 20 4 40 29 31 8
Kentucky 21 7 47 29 18 39 54 51 17
Louisiana 22 3 28 48 5
Maine 23 1 33
Maryland 24 5 51 10 54 42 11
Massachusetts 25 5 44 9 36 50 33
Michigan 26 3 18 39 55
Minnesota 27 4 19 55 46 38
Mississippi 28 4 22 5 1 47
Missouri 29 8 5 40 17 21 47 20 19 31
Montana 30 4 16 56 38 46
Nebraska 31 6 29 20 8 19 56 46
Nevada 32 5 6 4 49 16 41
New Hampshire 33 3 25 23 50
New Jersey 34 3 10 36 42
New Mexico 35 5 48 40 8 4 49
New York 36 5 34 9 42 50 25
North Carolina 37 4 45 13 47 51
North Dakota 38 3 46 27 30
Ohio 39 5 26 21 54 42 18
Oklahoma 40 6 5 35 48 29 20 8
Oregon 41 4 6 32 16 53
Pennsylvania 42 6 24 54 10 39 36 34
Rhode Island 44 2 25 9
South Carolina 45 2 13 37
South Dakota 46 6 56 27 19 31 38 30
Tennessee 47 8 5 28 1 37 13 51 21 29
Texas 48 4 22 5 35 40
Utah 49 6 4 8 35 56 32 16
Vermont 50 3 36 25 33
Virginia 51 6 47 37 24 54 11 21
Washington 53 2 41 16
West Virginia 54 5 51 21 24 39 42
Wisconsin 55 4 26 17 19 27
Wyoming 56 6 49 16 31 8 46 30

Sparse Contiguity Matrix for US States -- obtained from Anselin's web site (see powerpoint for link)



Style of Spatial Weight Matrix

• Row 
– a weight of unity for each neighbor relationship

• Row standardization
– Symmetry not guaranteed
– can be interpreted as allowing the calculation of 

average values across neighbors

• General spatial weights based on distances
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A B C

D E F

Row vs. Row standardization 

A B C D E F
Row 
Sum

A 0 1 0 1 0 0 2
B 1 0 1 0 1 0 3
C 0 1 0 0 0 1 2
D 1 0 0 0 1 0 2
E 0 1 0 1 0 1 3
F 0 0 1 0 1 0 2

Total number of neighbors
--some have more than others

A B C D E F
Row 
Sum

A 0.0 0.5 0.0 0.5 0.0 0.0 1
B 0.3 0.0 0.3 0.0 0.3 0.0 1
C 0.0 0.5 0.0 0.0 0.0 0.5 1
D 0.5 0.0 0.0 0.0 0.5 0.0 1
E 0.0 0.3 0.0 0.3 0.0 0.3 1
F 0.0 0.0 0.5 0.0 0.5 0.0 1

Row standardized
--usually use this

Divide each 
number by the 
row sum
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General Spatial Weights Based on 
Distance 

• Decay functions of distance
– Most common choice is  the inverse (reciprocal) of the distance 

between locations i and j (wij = 1/dij)
– Other functions also used

• inverse of squared distance (wij =1/dij
2), or 

• negative exponential  (wij = e-d or    wij = e-d2)
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A B C

D E F

Distance-based Spatial Weight Matrix

A B C D E F
A 0 2 0 2 1 0
B 2 0.0 2 1 2 1
C 0 2 0 0 1 2
D 2 1 0 0 2 0
E 1 2 1 2 0 2
F 0 1 2 0 2 0



Measure of Spatial 
Autocorrelation
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Global Measures and Local Measures
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• Global Measures
– A single value which applies to the entire data set

• The same pattern or process occurs over the entire 
geographic area

• An average for the entire area

• Local Measures
– A  value calculated for each observation unit 

• Different patterns or processes may occur in different 
parts of the region 

• A unique number for each location 

• Global measures usually can be decomposed 
into a combination of local measures



Global Measures and Local Measures
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• Global Measures
– Moran’s I

• Local Measures
– Local Moran’s I



Moran’s  I
• The most common measure of Spatial Autocorrelation
• Use for points or polygons 

28
Patrick Alfred Pierce Moran (1917-1988)



Formula for Moran’s  I

• Where:
N is the number of observations (points or polygons)

is the mean of the variable
Xi        is the variable value at a particular location
Xj is the variable value at another location
Wij is a weight indexing location of i relative to j
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Moran’s  I

• Varies on a scale between   –1   through 0*   to   + 1

30Briggs  Henan University 2010

-1 0 +1

high negative spatial 
autocorrelation

no spatial 
autocorrelation*

high positive spatial 
autocorrelation

Can also use it as an index for dispersion/random/cluster patterns.
Dispersed  Pattern Random Pattern Clustered Pattern
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*technically it is:
–1/(n-1)



Moran’s  I and Correlation Coefficient 

• Correlation Coefficient [-1, 1]
– Relationship between two different variables

• Moran�s I [-1, 1]
– Spatial autocorrelation and often involves one (spatially indexed) 

variable only
– Correlation between observations of a spatial variable at location 

X  and �spatial lag� of X formed by averaging all the observation 
at neighbors of X
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Note the similarity of the 
numerator (top) to the measures 
of spatial association discussed 
earlier if we view Yi as being the 
Xi for the neighboring polygon

(see next slide)

Source: Ron Briggs of UT Dallas
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Source: Ron Briggs of UT Dallas
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Moran Scatter Plots
We can draw a scatter diagram between these two variables (in 

standardized form):  X and   lag-X (or W_X)

The slope of this regression line is 
Moran’s I



Moran Scatter Plots
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Low/High 
negative SA

High/High 
positive SA

Low/Low 
positive SA

High/Low 
negative SA

Q1 (values [+], nearby values [+]): H-H

Q3 (values [-],  nearby values [-]): L-L

Q2 (values [-], nearby values [+]): L-H

Q4 (values [+], nearby values [-]): H-L

Locations of positive spatial association
(“I’m similar to my neighbors”).

Locations of negative spatial association
(“I’m different from my neighbors”).



Moran Scatterplot: Example
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Statistical Significance Tests for Moran’s I

• Based on the normal frequency distribution with 

• Statistical significance test
– Monte Carlo test, as we did for spatial pattern analysis
– Permutation test 

• Non-parametric
• Data-driven, no assumption of the data
• Implemented in GeoDa

Where: I is the calculated value for Moran’s I 
from the sample  

E(I) is the expected value if random 

S is the standard error  

)(
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IerrorS
IEI

Z
-
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Test Statistic for Normal Frequency Distribution
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0-1.96

2.5%

1.96

2.5% 1%

2.54

*technically   –1/(n-1)

–1/(n-1)

Reject null at 5%
Reject null

Reject null at 1%Null Hypothesis: no spatial autocorrelation
*Moran�s I = 0  

Alternative Hypothesis: spatial autocorrelation exists
*Moran�s I > 0

Reject Null Hypothesis if Z  test statistic > 1.96  (or < -1.96)
---less than a 5% chance that, in the population, there is no

spatial autocorrelation
---95% confident that spatial auto correlation exits



Null Hypothesis: no spatial autocorrelation
*Moran�s I = 0  

Alternative Hypothesis: spatial autocorrelation exists
*Moran�s I > 0

Reject Null Hypothesis if Z  test statistic > 1.96  (or < -1.96)
---less than a 5% chance that, in the population, there is no

spatial autocorrelation
---95% confident that spatial auto correlation exits
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Spatial Autocorrelation: 
shows the association or 
relationship between the 
same variable in “near-
by” areas.

Spatial Autocorrelation vs Correlation 
Standard Correlation

shows the association or 
relationship between two 
different variables
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Bivariate Moran Scatter Plot
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Low/High 
negative SA

High/High 
positive SA

Low/Low 
positive SA

High/Low 
negative SA



Local Measures of
Spatial Autocorrelation
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Local Indicators of Spatial Association (LISA)

• Local versions of Moran’s I
• Moran’s I is most commonly used, and the local version 

is often called Anselin’s LISA, or just LISA 
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See: 
Luc Anselin 1995 Local Indicators of Spatial 
Association-LISA Geographical Analysis 27: 93-115



Local Indicators of Spatial Association (LISA)

• The statistic is calculated for each areal unit in the data
• For each polygon, the index is calculated based on neighboring 

polygons with which it shares a border
• A measure is available for each polygon, these can be mapped 

to indicate how spatial autocorrelation varies over the study 
region

• Each index has an associated test statistic, we can also map 
which of the polygons has a statistically significant relationship
with its neighbors, and show type of relationship
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Example:
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Calculating Anselin’s LISA
• The local Moran statistic for areal unit i is:

where zi is the original variable xi in
“standardized form”
or it can be in “deviation form”  

and  wij is the spatial weight 
The summation       is across each row i of the 

spatial weights matrix. 
An example follows  
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Example using seven China provinces 
--caution: “edge effects” will strongly influences the 
results because we have a very small number of 
observations

Source: Ron Briggs of UT Dallas
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1

5
4

3

6 7
2

Contiguity Matrix 1 2 3 4 5 6 7
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum Neighbors Illiteracy

Anhui 1 0 1 1 1 1 1 0 5 6 5 4 3 2 14.49
Zhejiang 2 1 0 1 1 0 0 1 4 7 4 3 1 9.36
Jiangxi 3 1 1 0 0 0 1 0 3 6 2 1 6.49
Jiangsu 4 1 1 0 0 0 0 1 3 7 2 1 8.05
Henan 5 1 0 0 0 0 1 0 2 6 1 7.36
Hubei 6 1 0 1 0 1 0 0 3 1 3 5 7.69
Shanghai 7 0 1 0 1 0 0 0 2 2 4 3.97

Source: Ron Briggs of UT Dallas
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Contiguity Matrix 1 2 3 4 5 6 7
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum

Anhui 1 0 1 1 1 1 1 0 5
Zhejiang 2 1 0 1 1 0 0 1 4
Jiangxi 3 1 1 0 0 0 1 0 3
Jiangsu 4 1 1 0 0 0 0 1 3
Henan 5 1 0 0 0 0 1 0 2
Hubei 6 1 0 1 0 1 0 0 3
Shanghai 7 0 1 0 1 0 0 0 2

Row Standardized Spatial Weights Matrix
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum

Anhui 1 0.00 0.20 0.20 0.20 0.20 0.20 0.00 1
Zhejiang 2 0.25 0.00 0.25 0.25 0.00 0.00 0.25 1
Jiangxi 3 0.33 0.33 0.00 0.00 0.00 0.33 0.00 1
Jiangsu 4 0.33 0.33 0.00 0.00 0.00 0.00 0.33 1
Henan 5 0.50 0.00 0.00 0.00 0.00 0.50 0.00 1
Hubei 6 0.33 0.00 0.33 0.00 0.33 0.00 0.00 1
Shanghai 7 0.00 0.50 0.00 0.50 0.00 0.00 0.00 1

Contiguity Matrix and 
Row Standardized Spatial Weights  Matrix

1/3

Source: Ron Briggs of UT Dallas



Calculating standardized (z) scores
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x

i
i SD

xx
z

-
=Deviations from Mean and z scores. 

X X-Xmean X-Mean2 z

Anhui 14.49 6.29 39.55 2.101 
Zhejiang 9.36 1.16 1.34 0.387 
Jiangxi 6.49 (1.71) 2.93 (0.572)
Jiangsu 8.05 (0.15) 0.02 (0.051)
Henan 7.36 (0.84) 0.71 (0.281)
Hubei 7.69 (0.51) 0.26 (0.171)
Shanghai 3.97 (4.23) 17.90 (1.414)

Mean and Standard Deviation
Sum 57.41 0.00 62.71 
Mean 57.41 /    7   = 8.20
Variance 62.71 /   7   = 8.96 
SD √ 8.96 = 2.99 

Source: Ron Briggs of UT Dallas



Row Standardized Spatial Weights 
Matrix

Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai

Anhui 1 0.00 0.20 0.20 0.20 0.20 0.20 0.00
Zhejiang 2 0.25 0.00 0.25 0.25 0.00 0.00 0.25
Jiangxi 3 0.33 0.33 0.00 0.00 0.00 0.33 0.00
Jiangsu 4 0.33 0.33 0.00 0.00 0.00 0.00 0.33
Henan 5 0.50 0.00 0.00 0.00 0.00 0.50 0.00
Hubei 6 0.33 0.00 0.33 0.00 0.33 0.00 0.00
Shanghai 7 0.00 0.50 0.00 0.50 0.00 0.00 0.00

Z-Scores for row Province  and its potential neighbors
Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai

Zi
Anhui 2.101 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)
Zhejiang 0.387 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)
Jiangxi (0.572) 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)
Jiangsu (0.051) 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)
Henan (0.281) 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)
Hubei (0.171) 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)

Shanghai (1.414) 2.101 0.387 (0.572) (0.051) (0.281) (0.171) (1.414)

Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication)  
Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai SumWijZj LISA Lisa from

Zi 0.000 GeoDA
Anhui 2.101 - 0.077 (0.114) (0.010) (0.056) (0.034) - (0.137) -0.289 -0.248
Zhejiang 0.387 0.525 - (0.143) (0.013) - - (0.353) 0.016 0.006 0.005
Jiangxi (0.572) 0.700 0.129 - - - (0.057) - 0.772 -0.442 -0.379
Jiangsu (0.051) 0.700 0.129 - - - - (0.471) 0.358 -0.018 -0.016
Henan (0.281) 1.050 - - - - (0.085) - 0.965 -0.271 -0.233
Hubei (0.171) 0.700 - (0.191) - (0.094) - - 0.416 -0.071 -0.061

Shanghai (1.414) - 0.194 - (0.025) - - - 0.168 -0.238 -0.204

Calculating LISA

j
j

ijii zwzI å=

wij

zj

wijzj

51Source: Ron Briggs of UT Dallas



Significance levels are calculated by 
simulations.  They may differ each 
time software is run.

I expected Anhui to be 
High-Low!
(high illiteracy 
surrounded by low)

High

Low

Low-High

Moran’s I = -.01889

Results
Raw Data

Province Literacy % LISA Significance
Anhui 14.49 -0.25 0.12

Zhejiang 9.36 0.01 0.46
Jiangxi 6.49 -0.38 0.04
Jiangsu 8.05 -0.02 0.32
Henan 7.36 -0.23 0.14
Hubei 7.69 -0.06 0.28

Shanghai 3.97 -0.20 0.37
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Example: Nepal Data
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Bivariate LISA
• Moran�s I is the correlation between X 

and Lag-X--the same variable  but in 
nearby areas
– Univariate Moran�s I

• Bivariate Moran�s I is a correlation 
between X and a different variable in 
nearby areas.

Moran Scatter Plot for GDI vs AL

Moran Significance Map for GDI vs. AL



Bivariate LISA
and the Correlation Coefficient

• Correlation Coefficient is the 
relationship between two 
different variables in the same
area

• Bivariate LISA is a correlation 
between  two different
variables in an area and in 
nearby areas.
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• correlation coefficients and coefficients of 
determination appear bigger than they really are 

•You think the relationship is stronger than it really is
•the variables in nearby areas  affect  each other

• Standard errors appear smaller than they really are
•exaggerated precision
•You think your predictions are better than they really are

since standard errors measure predictive accuracy
•More likely to conclude 

relationship is statistically significant.

Consequences of Ignoring Spatial 
Autocorrelation



Diagnostic of Spatial Dependence
• For correlation

– calculate Moran’s I for each variable and test its statistical 
significance

– If Moran’s I is significant, you may have a problem!

• For regression
– calculate the residuals

map the residuals: do you see any spatial patterns?
– Calculate Moran’s I for the residuals: is it statistically 

significant?
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Summary
• Spatial autocorrelation of areal data
• Spatial weight matrix
• Measures of spatial autocorrelation
• Global Measure

– Moran�s I

• Consequences of ignoring spatial 
autocorrelation

• Significance test
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• Please read O’S & Unwin Ch. 7 and Ch. 8.1
and 8.2

• End of this topic
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