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Spatial Point Patterns

Characteristics:
• set of n point locations with recorded “events”, e.g., locations of
trees, disease or crime incidents S = {s1, . . . , si , . . . , sn}

• point locations correspond to all possible events or to subsets of
them

• attribute values also possible at same locations, e.g., tree diameter,
magnitude of earthquakes (marked point pattern)
W = {w1, . . . ,wi , . . . ,wn}

Analysis objectives:

• detect spatial clustering or repulsion, as opposed to complete
randomness, of event locations (in space and time)

• if clustering detected, investigate possible relations with nearby
“sources”
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Simple Descriptive Statistics
Mean center of a point pattern:

• point with coordinates s̄ = (x̄ , ȳ):

x̄ =
∑n

i=1 wixi

∑n
i=1 wi

and ȳ =
∑n

i=1 wiyi

∑n
i=1 wi

• center of point pattern, or point with average x and y -coordinates

Median center of a point pattern:
• both of the following two centers are called median centers,
although they are essentially different (confusing!)

• the intersection between the median of the x and the y coordinates

• center for minimum distance: sc ∈ {s1, . . . , sn}s.t.min
n
∑
i=1
|si − sc |

• the first type of median center is not unique, and there is no closed
form for the second type

• p-median problem (a typical problem in spatial optimization ): the

problem of locating p “facilities” relative to a set of “customers” such that the sum of

the shortest demand weighted distance between “customers” and “facilities” is minimized

hoti
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Simple Descriptive Statistics
Changes of population center (year 1790-2000):
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Descriptive Statistics

Standard distance of a point pattern:

• average squared deviations of x and y coordinates from their
respective mean:

dstd =

√
∑n

i=1(xi − x̄)2 + ∑n
i=1(yi − ȳ)2

n− 2

• related to standard deviation of coordinates, a summary circle
(centered at s̄ with radius dstd ) of a point pattern

Standard deviational ellipse:

• Taking directional effects into account for anisotropy cases
• Please refer to Levine and Associates, 2004 for calculations
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Descriptive Statistics

Examples:
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Remarks:
• indicates overall shape and center of point pattern
• do not suffice to fully specify a spatial point pattern
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Point Pattern Analysis Methods

1st order (i.e., intensity): absolute location of events on map:

• Quadrat methods
• Density Estimation (KDE)
• Moran’s I and Geary’s C

2nd order (i.e., interactions): interaction of events:

• Nearest neighbor distance
• Distance functions G, K, F, L
• Getis-Ord Gi* and Anselin local Moran’s I

7/38



Quadrat methods

Consider a point pattern with n events within a study region A of area |A|

Global intensity:

λ̂ =
n

|A| =
#of events withinA

|A|

Local intensity via quadrats

1. partition A into L sub-regions Al , l = 1, . . . , L of equal area |Al |
(also called quadrats)

2. count number of events n(Al ) in each sub-region Al

3. convert sample counts into estimated intensity rates as:

λ̂(Al ) =
n(Al )

|Al |
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Quadrat methods
  bei

337 608 162 73 105 268

422 49 17 52 128 146

231 134 92 406 310 64

• estimated rates λ̂(Al ) over set of quadrats
• reveal large-scale patterns in intensity variation over A
• larger quadrats yield smoother intensity maps; smaller quadrats yield
‘spiky’ intensity maps

• size, origin, and shape of quadrats is critical (recall: MAUP)
• only first-order effects are captured
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Dependence of intensity on a covariate (Inhomogeneous cases)
  bei   slope
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Kernel Density Estimation
Procedure of Kernel Density Estimation (KDE)

1. define a kernel K (s; r) of radius (or bandwidth) r centered at any
arbitrary location s

2. estimate local intensity at s as:

λ̂(s) =
1
n

n

∑
i=1

K (si − s; r)

3. repeat estimation for all points s in the study region to create a
density map
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Kernel Density Estimation

An illustration of the KDE procedure in 1D
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Kernel Density Estimation

Example for the previous dataset:
  den
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Kernel Density Estimation
Example with 2km bandwidth
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Kernel Density Estimation
Example with 10km bandwidth
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Kernel Density Estimation
Example with 40km bandwidth
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Kernel Density Estimation

Comments
• Choice of kernel function is not critical (Diggle, 1985)
• Choice of bandwidth, or degree of smoothing critical:

• Small bandwidth → spiky results
• Large bandwidth → loss of detail

• Multi-scale analyses can use these bandwidth characteristics to
investigate both broad trends and localized variation

• How to choose bandwidth: choose the degree of smoothing
subjectively, by eye, or by formula (Diggle)

• could define local bandwidth based on function of presence of events
in neighborhood of s (i.e., adaptive kernel estimation)

What does the output of KDE means?
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Distance-based Descriptors of Point Patterns

• Distances: accessing second order effects
• Event-to-event distance: distance dij between event at arbitrary

location si and another event at another arbitrary location sj :

dij =
√
(xi − xj )2 + (yi − yj )2
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Distances
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1 2 3 4 5
1 0.00 11947.70 16042.65 3481.22 10742.98
2 11947.70 0.00 5126.79 15219.58 1599.07
3 16042.65 5126.79 0.00 19481.59 6720.59
4 3481.22 15219.58 19481.59 0.00 13913.70
5 10742.98 1599.07 6720.59 13913.70 0.00

Table: Euclidean distance matrix
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Nearest-Neighbor Distances
Nearest neighour distances

  103 clustering points   103 clustering points
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• Mean nearest neighbour distance: Average of all dmin(si ) values

d̄min =
1
n

n

∑
i=1

dmin(si )
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The G function
• Definition: nearest neighbour distance function, i.e., proportion of
event-to-nearest-neighbor distances dmin(si ) no greater than given
distance cutoff d , estimated as:

Ĝ (d) =
#{dmin(si ) < d , i = 1, . . . , n}

n

• alternative definition: cumulative distribution function (CDF) of all
n event-to-nearest-neighbor distances; instead of computing average
d̄min of dmin values, compute their CDF

• the G function provides information on event proximity
• example for previous clustering point pattern:

Histogram of dm[which(dm > 0)]
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Examples of G function
  103 clustering points   103 clustering points
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Expected plot:

• for clustered events, Ĝ (d) rises sharply at short distances, and then
levels off at larger d-values

• for randomly-spaced events, Ĝ (d) rises gradually up to the distance
at which most events are spaced, and then increases sharply
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K function

Working with pair-wise distances&looking beyond nearest neighbours

Concept

1. construct set of concentric circles (of increasing radius d) around
each event

2. count number of events in each distance “band”
3. cumulative number of events up to radius d around all events

becomes the sample K function K̂ (d)
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K function

Working with pair-wise distances&looking beyond nearest neighours

• Formal definition:

K (d) =
1
λ

#{dij ≤ d , i , j = 1, . . . , n}
n

=
|A|
n

#{dij ≤ d , i , j = 1, . . . , n}
n

= |A|(proportion of event-to-event distance ≤ d)

• In other words, the K̂ (d) is the sample cumulative distribution
function (CDF) of all n2 event-to-event distances, scaled by |A|
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Examples of Event-to-Event Distance Histogram and CDFs
  103 clustering points   103 uniform points
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• for clustered events, there are multiple bumps in the CDF of E2E
distances due to the grouping of events in space
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Examples of K functions
  103 clustering points   103 uniform points
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• the sample K function K̂ (d) is monotonically increasing and is a
scaled (by area |A|) version of the CDF of E2E distances
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Recap

Spatial point patterns

• set of n point locations with recorded “events”

Describing the first-order effect

• overal intensity
• local intensity (quadrat count and kernel density estimation)

Describing the second-order effect
• nearest neighbour distances

• the G function
• pair-wise distances

• the K function
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Caveats
Caveats:

• theoretical G, K functions are defined and estimated under the
assumption that the point process is stationary (homogeneous)

• these summary functions do not completely characterise the process
• if the process is not stationary, deviations between the empirical and
theoretical functions (e.g. K̂ and K) are not necessarily evidence of
interpoint interaction, since they may also be attributable to
variations in intensity

Example

  caveat #2

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

caveat #2

r

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

  caveat #3

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

caveat #3

r

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

28/38



Descriptive vs Statistical Point Pattern Analysis

Descriptive analysis:

• set of quantitative (and graphical) tools for characterizing spatial
point patterns

• different tools are appropriate for investigating first- or second-order
effects (e.g., kernel density estimation versus sample G function)

• can shed light onto whether points are clustered or evenly
distributed in space

Limitation:
• no assessment of how clustered or how evenly-spaced is an observed
point pattern

• no yardstick against which to compare observed values (or graph) of
results
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Descriptive vs Statistical Point Pattern Analysis

Statistical analysis:

• assessment of whether an observed point pattern can be regarded as
one (out of many) realizations from a particular spatial process

• measures of confidence with which the above assessment can be
made (how likely is that the observed pattern is a realization of a
particular spatial process)

Are daisies randomly distributed in your garden?
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Complete Spatial Randomness (CSR)
Complete Spatial Randomness (CSR)

• yardstick, reference model that observed point patterns could be
compared with, i.e., null hypothesis

• = homogeneous (uniform) Poisson point process
• basic properties:

• the number of points falling in any region A has a Poisson
distribution with mean λ|A|

• given that there are n points inside region A, the locations of these
points are i.i.d. and uniformly distributed inside A

• the contents of two disjoint regions A and B are independent

Example:   csr example #1   csr example #2
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Nearest Neighbour Index (NNI) test under CSR

Nearest neighbour index

• Compares the mean of the distance observed between each point
and its nearest neighbor (d̄min) and the expected mean distance
under CSR E (dmin)

NNI =
d̄min

E (dmin)

• Under CSR, we have:

E (dmin) =
1

2
√

λ

σ(dmin) =
0.26136√
n2/A
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The K Function under CSR
• The K function is a function of pair-wise distances
• For a homogeneous Poisson point process of intensity λ, the
pair-wise distance distribution (the K function) is known to be:

K (d) = πd2

• A commonly-used transformation of K is the L-function:

L(d) =

√
K (d)

π
= d

Example
  bei
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Monte Carlo test

• because of random variability, we will never obtain perfect
agreement between sample functions (say the K function) with
theoretical functions (the theoretical K functions), even with a
completely random pattern

Example
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Monte Carlo test

• A Monte Carlo test is a test based on simulations from the null
hypothesis

• Basic procedures:
• generate M independent simulations of CSR inside the study region A
• compute the estimated K functions for each of these realisations, say

K̂ (j)(r) for j = 1, . . . ,M
• obtain the pointwise upper and lower envelopes of these simulated
curves

• not a confidence interval

Example
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Recap
Statistical analysis of spatial point patterns:

• allows to quantify departure of results obtained via exploratory tools,
e.g., Ĝ (d), from expected such results derived under specific null
hypotheses, here CSR hypothesis

• can be used to assess to what extent observed point patterns can be
regarded as realizations from a particular spatial process (here CSR)

• Same concepts can be applied for hypothesis of other types of point
processes (e.g., Poisson cluster process, Cox process)

Sampling distribution of a test statistics

• lies at the heart of any statistical hypothesis testing procedure, and
is tied to a particular null hypothesis

• simulation and analytical derivations are two alternative ways of
computing such sampling distributions (the latter being increasingly
replaced by the former)

Edge Effects
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Recap
Scale effects

• Wolf pack example

• Nearest neighour distance (NN distance, G functions) vs K function

Edge effects
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Recap

Extended into line processes

• Line density

38/38


