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Histogram

• An Example: Consider a list of 10 hypothetical sample values:
2 2 9 8 7 9 5 6 8 3
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• Relative frequency table:
pk = # of data in k-th class/(total # of data)

k 1 2 3 4 5 6 7 8 9
pk 0.2 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.0

• Please note: Histogram shape depends on number and width of classes;
rule of thumb for number of classes: 5 ∗ log10(# of data) and use
non-overlapping equal intervals
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Histogram Shape Characteristics

• Peaked or not
Peaked
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• Numbers of peaks

−3 −2 −1 0 1 2 3

0
50

10
0

15
0

−2 0 2 4 6 8

0
50

10
0

15
0

• Symmetric or not
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Cumulative Histogram

• Ranked sampled data and their relative frequency
k 1 2 3 4 5 6 7 8 9
pk 0.2 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.0

• Cumulative relative frequency
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• Proportion of sample values less than, or equal to, any given cutoff
value

• Probability that any random sample is no greater than and given
cutoff value
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Quantiles
Definition:

• datum value xp corresponding to specific cumulative relative
frequency value p
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• Commonly used quantiles:
• min: x0.0, lower quantiles: x0.25, median: x0.50, upper quantile:

x0.75, max: x1.00
• Percentiles: x0.01, x0.02, . . . , x0.99
• Deciles: x0.10, x0.20, . . . , x0.90

• Quantiles are not sensitive to extreme values (outliers)
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Measure of Central Tendency

• mid-range: arithmetic average of highest and lowest values:
xmax+xmin

2
• mode: most frequently occuring values in data sets
• median: datum value that divides data set into halves; also defined
as 50-th percentiles: x0.5

• mean: arithmatic average of values in data set
• sample mean: m = x̄ = 1

n ∑n
x=1 xi

• population mean: µ = 1
N ∑N

x=1 xi
• sample mean is an esimation of population mean

• Note: Most appropriate measure of central tendency depends on
distribution shapes
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Measure of Dispersion I

• range: difference between highest and lowest values: xmax − xmin

• interquantile range (IQR): difference between upper and lower
quantiles: x0.75 − x0.25

• mean absolute derivation from mean: averange absolute difference
between each datum value and the mean: 1

n ∑n
i=1|xi − x̄ |

• median absolute derivation from median: median absolute difference
between each datum value and the median: |xi − x0.5|0.5

• variance: average squared difference between any datum values and
the mean:

• sample variance: s2 = 1
n−1 ∑n

i=1(xi −m)2

• standard deviation: square root of variance s or σ
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Quantile-Quantile (Q-Q) Plots

Graph for comparing the shapes of distribution
• Normalizing procedure:

1. rank both data sets from smallest to largest values
2. compute quantiles of each data set
3. cross-plot each quantile pair
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•• Interpretation: straight plot aligned with 45◦ line implies two similar
distribution
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Boxplot
Graph for describing the the degree of dispersion and skewness
and identify outliers

• Non-parametric
• 25%, 50%, and 75% percentiles
• end of the hinge (whisker) could mean differently; most ofen represent the

lowest datum within 1.5 IQR of the lower quantile, and the highest datum still within 1.5

IQR of the upper quantile
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• Points outside of range are usually taken as outliers
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Commonly Used Probability Distributions

• Gaussian (or normal) distribution
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• The shapes are controlled by mean (µ) and variance (σ2)
• Three sigma rule (68− 95− 99.7 rule)

10/26



Covariance and Correlation Coefficient

Suppose X and Y are two random variables for a random experiment
• the covariance of X and Y measures how much these two random
variables are related

• cov(X ,Y ) = E [(X − E (X )(Y − E (Y )))]

• The correlation coefficient of X and Y a normalized version of
covariance

• cor (X ,Y ) = cov (X ,Y )
σX σY

• cov(X ,Y ) = 0 means X and Y are ’unrelated’

11/26



p-value

• Assuming the null hypothesis is true, the p-value is the probability a
test statistics at least as extreme as the one that was actually
observed
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Spatial Versus Non-Spatial Statistics

Classical statistics
• samples assumed realizations of independent and identically
distributed random variables (iid)

• most hypothesis testing procedures call for samples from iid random
variables

• problems with inference and hypothesis testing in a spatial setting

Spatial statistics

• multivariate statistics in a spatial/temporal context: each
observation is viewed as a realization from a different random
variable, but such random variables are auto-correlated in space
and/or time

• each sample is not an independent piece of information, because
precisely it is redundant with other samples (due to the
corresponding random variables being auto-correlated)

• auto- and cross-correlation (in space and/or time) is explicitly
accounted for to establish confidence intervals for hypothesis testing
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Some Issues Specific to Spatial Data Analysis

Spatial dependency

• values that are closer in space tend to be more similar than values
that are further apart (Tobler’s first law of Geography)

• redundancy in sample data = classical statistical hypothesis testing
procedures not applicable

• positive, zero, and negative spatial correlation or dependency

The modified areal unit problem (MAUP)

• spatial aggregations display different spatial characteristics and
relationships than original (non-averaged) values

• scale and zoning (aggregation) effects
Ecological fallacy

• problem close related to the MAUP
• relationships established at a specific level of aggregation (e.g.,
census tracts) do not hold at more detailed levels (e.g., individuals)
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Spatial Dependency (I)

• often termed as spatial similarity, spatial correlation and spatial
pattern, spatial pattern, spatial texture . . .

• Examples of synthetic maps with same histogram:
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Spatial Dependency (II)

Spatial statistics
• inference of spatial dependency is the core of spatial statistics

• spatial interpolation, e.g., kriging family of methods
• spatial point pattern analysis
• spatial areal units (regular or irregular)

• often extended into a spatio-temporal domain to investigate the
dynamic phenomena and processes, e.g., land use and land cover
changes
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The Modified Areal Unit Problem

The same basic data yield different results when aggregated in different
ways

• First studied by Gehlke and Biehl (1934)
• Applies where data are aggregated to areal units which could take
many forms, e.g., postcode sectors, congressional district, local
government units and grid squares.

• Affects many types of spatial analysis, including clustering,
correlation and regression analysis.

• Example: Gerrymandering of congressional districts (Bush vs. Gore,
Lincoln vs. Douglas)

• Two aspects of this problem: scale effect and zoning (aggregation)
effect
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The Modified Areal Unit Problem: Examples

Example 1 2 3
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The Modified Areal Unit Problem: Scale Effect (1)
Scale effect
Analytical results depending on the size of units used (generally, bigger
units lead to stronger correlation)

Example

Table: spatial variable #1 versus spatial variable #2

87 95 72 37 44 24
40 55 55 38 88 34
41 30 26 35 38 24
14 56 37 34 08 18
49 44 51 67 17 37
55 25 33 32 59 54

72 75 85 29 58 30
50 60 49 46 84 23
21 46 22 42 45 14
19 36 48 23 8 29
38 47 52 52 22 48
58 40 46 38 35 55

Table: ρ(v1, v2) = 0.83
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The Modified Areal Unit Problem: Scale Effect (2)
Scale effect
Analytical results depending on the size of units used (generally, bigger
units lead to stronger correlation)

Example

Table: spatial aggregation strategy # 1

91.0 47.5 35.5
35.0 46.5 40.0
54.5 46.5 30.5
35.5 59.0 32.5
34.0 61.0 31.0
13.0 27.0 56.5

73.5 55.0 33.5
27.5 42.5 49.0
57.0 47.5 32.0
35.5 52.0 42.0
44.0 53.5 29.5
18.5 35.0 45.0

Table: ρ(v1, v2) = 0.90
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The Modified Areal Unit Problem: Zoning Effect
Zoning effect
Analytical results depending on how the study area is divided up, even at
the same scale

Example

Table: spatial aggregation strategy #2

63.5 75 63.5 37.5 66 29.0

27.5 43 31.5 34.5 23 21

52.0 34.5 42 49.5 38.0 45.5

61.0 67.5 67.0 37.5 71.0 26.5

20.0 41.0 35.0 32.5 26.5 21.5

48.0 43.5 49.0 45.0 28.5 51.5

Table: ρ(v1, v2) = 0.94
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The Modified Areal Unit Problem: Zoning Effect

Zoning effect: another example

Figure: Image Courtesy of OpenShaw
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Ecological Fallacy (I)
• relationships established at a specific level of aggregation do not
hold at more detailed levels

Example

Table: spatial aggregation strategy # 1

91.0 47.5 35.5
35.0 46.5 40.0
54.5 46.5 30.5
35.5 59.0 32.5
34.0 61.0 31.0
13.0 27.0 56.5

73.5 55.0 33.5
27.5 42.5 49.0
57.0 47.5 32.0
35.5 52.0 42.0
44.0 53.5 29.5
18.5 35.0 45.0

Table: ρ(v1, v2) = 0.90
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Ecological Fallacy (II)
• relationships established at a specific level of aggregation do not
hold at more detailed levels

Example

Table: spatial variable #1 versus spatial variable #2

95 87 37 72 24 44
55 40 38 55 34 88
30 41 35 26 24 38
56 14 34 37 18 08
44 49 67 51 37 17
25 55 32 33 54 59

72 75 85 29 58 30
50 60 49 46 84 23
21 46 22 42 45 14
19 36 48 23 8 29
38 47 52 52 22 48
58 40 46 38 35 55

Table: ρ(v1, v2) = 0.21
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Software for Statistical Analysis of Spatial Data

GIS-based packages

• ESRI’s Spatial Analyst, Geostatistical Analyst, Spatial Statistics
• opt for “close” or “loose” coupling with specialized external packages
when specific functionalities are missing from a GIS

Statistical packages

• R packages, Matlab (new class will be available this Fall!)
• GeoDa/PySAL
• versatile in modeling, programable
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